UNIVERSITE

T
IZ

Attack redirection

Hi

o

—

Information Assurance Laboratory
Center for Risk of Reliability
University of Maryland

Julien VEHENT — April/September 2007
Master Management de la Sécurité des Systemes Industriels
et des Systémes d'Information

I would like to deeply thank my adviser Doctor Michel Cukier, Assistant Professor in the
Department of Mechanical Engineering and co-director of the Information Assurance Laboratory,
and Robin Berthier, Ph.D student in Reliability Engineering. This internship would not have been

doable without their supports and advises.

I would also like to salute all the students, researchers and friends I met during the last 6
months. The regular misunderstandings due to our various and awkward accents have made this

stay really enjoying.

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

RESUME

La nécessité d'observer, d'analyser et de comprendre les comportements frauduleux est bien
connue dans le monde de la gestion des risques : la protection d'un environnement ne peut se faire
correctement sans la compréhension des risques qui l'affaiblissent. Concernant les risques liés aux
piratages informatiques, les systéemes de Honeypots fournissent probablement le meilleur moyen
d'analyse.
L'université du Maryland, et en particulier 1'Information Assurance Laboratory, travaille sur
plusieurs projets et méthodes liés aux réseaux Honeypots. A cause de 'important trafic frauduleux
qui circule en permanence sur le réseau Internet, 'analyse des informations que recoit un Honeypot
est rendue difficile. Je vais présenter dans ce rapport le travail que j'ai effectué sur 1'analyse, la
spécification et la création d'une méthode permettant de sélectionner des attaques intéressantes sur

lesquelles une analyse approfondie pourra ensuite étre effectuée.

ABSTRACT

The need to watch, analyze and understand malicious behaviors is a well known
requirement in risk management : the protection of an environment can't be done without the
understanding of the risks that weaken it. Regarding computer systems risks, honeypots provide
certainly the most efficient analytic system.

The University of Maryland, and more precisely the Information Assurance Laboratory, works on
several projects and methods linked to Honeypots. Because of the important malicious traffic on the
Internet, the analysis of the information that a Honeypot receives is difficult. I will present in this
report the work I have done on the analysis, the specification and the creation of a method that

allows the selection of interesting attacks on which a detailed analysis could be done later.

Julien Vehent - Attack redirection in Honeypots p-3/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Table of contents

INITOAUCEION c...couanenenaeiainininininireririresisisss sosssssssssssssssnssnss 6
The UniversSity of MarylanNd...........ceceeeveieiirerersrissssssssssssosssssssssssssssssssssssssssss ssssssssssssossns 7
HONEYPOL LN@OT Y .c..cuucuviriniiinnieiisiisssssesssssssssssossssssosssssssssssosssssssssssssssssssssssssssses sossssosasns 9
) A o A 0 a 1= 1 Y = N 9
1.1.1 The HOneynet PrOJECE.....ccuui it e et e et e et e e e e aans eaeen 10

1.2 HONEYPOU TYDES. . ittt et ettt et e et e et e et e et e et e ean e eaaeeenenns 11
1.2.1 Low-Interaction HONEYPOTS.ciuiiiiiiiiie ettt et e e et e e e eaeae teveneneanenan 11

1.2.2 High-Interaction HONEYPOTS.ccvuiiii it e et e et e e e e e e e e aeaeneenaas 12
1.2.3 HYyDTid HONEBYPOES. .. ciuiiieiiie et e et et e e et e e ae e et eeteraeaeresnesaaaenns 12

1.3 A New Hybrid HONEYPOL. ... it e et e e e e e et e e e s et e e eaneens 13

G TR A o = Yo | =1 =Y od o) o PN 14

1.3.2 What is an interesting attack ?.........ooouiiiiiiiiii e o 15

1.3.3 Unknown attacks selection teChniques...........coouiiiiiii i e 16

1.3.4 Connection sequences SIrings analySiS.......cceiuueiiieiiiiiiiieiiir e e ceeeeaeeneenas 17

1.3.5 The interaction limit Problem..........ccoeuiiiiiiiei e e e e e .18

G T ST O} Vo 11 1370) o H N 19

The ATQUSPTOXY PTOJECK.....ccucuevsiiisiaiirisieiissssssssssssssssosssssssssssossssssssssssss sassssssssssassssosses 20
2.1 The Argusnet NeTWOTK.....coui i e et e e e e e e e e reeameaeaneanees 20
2.1.1 ArgusSnel EXPETimIENES. .. iiie ittt et et e e et e e teeee e et e et e atn eeaeeneaeeaaaneanas 22

2.2 ArgusProxy : software engineering........ccoeeuuiiiiiiiiiiieiie ettt ettt ea e 22

B T 2 =T 1O =Y 010 1Y o L S PP 22
2.2.2 ACEIVITY DIAQTAIM. ... ittt e e et et e et et et e et een eeeeaaneaeeeneneeaaneneenenens 23

2.2.3 Deployment Diagraml.......ccuuiiiiiiiiiiii e e e e ee et et e e e e e et eeteete e et et eaaaraaaaaaas 25
2.2.4 MoAUIES INEETACEIONS.uiii it e e e e et e et e e e e et e st e et eaneeanaaans saeenns 26

W B A= To 1 4 =Y od 7o) PSPPSR 26

2.2.4.2 DECISION EIIINE. ...ttt ettt ettt e et e e et e e et e e et e eetans eanetaennetnennerennenns 27

2.2.4.3 SNATEA IBINIOTY . c..uueiiiiiiiee e ettt e et teie e e ettt e e e e ettt e e e e etana e eeetesan e eeeasnaneeeeesnanaeeaeennans eeenneenns 28

2.2.5 DOCUIMENEATION. ..ottt et e et e et e e e et e et e et e et e et e atn eeneaeeaeeneanns 29

B T 01 1=] = U o) [T PPN 30
P80 T0 B © -1 a1t o =T 1 i 1 o' P TTPRTRN 30

2.4 TECHINICAL ISSUES. .. iitiiiiieeii ettt e e e et e et e et e et e et e et e aaaeeranaees 31
TeSLS & fULUTC WOTK....aannaneeeneeeneereeeieerneereereresecsecesecesecssscsssessssssssssasssssscsss sossssssssssnnnee 34
CONCIUSION. . ..acuuuuenenrririririririeieieieiaieissusesesssssssssess soses 35
RefOTCINCES.c..ucennaenneenneeeereerettaerreereesessaessosesosossass sosens 36
FRIQUITCS..cccuieiaiiiaiiisssiesisssessssesssssssssssessssssessssessssssesssssssssssessssssssss soossssssssssesssnsossssessns 37
GLOSSATY.c.ucurieieieriairisianiriasirsssuoessosssssssesssssssssssesssssssssssesssssssssssesssssssssssessssssssssse sossssnses 38
APPCIUAIX .ccueeeereereiietieereesetseeseseesessssossasssasscasce oo 39
Y G- 111 1 P TP PP PUTPTPTPPRt 39

B = Connections SEQUENCES @NalYSiS.....ciuuiiiiiiiiiiiiieiiiiiie et e e e e ete et e e e e eeneerneeeereeenanes 40

C = ArgusProxy NetWorK ENQINe......c.oiiiiiiiiiiie e e e e e e e et e e eanees 47

D = ATQUSPTOXY SOUTCE COUC...iuuiiuiineiiniiieiieetieeteeteetaeetaetneetnaetnsetsreasaneetnesrnereamenseessaseassnses 50

Julien Vehent - Attack redirection in Honeypots p-4/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Introduction

L

Like the old proverb says : “know your enemies and know yourself, you will win a hundred times
in a hundred of battles”. This advise is still applicable to the network war that opposes companies, that
have computer networks to protect, to hackers, who want to use these very networks for their malicious
activities. In this context, a honeypot is a lure that is useful to make the enemy come. Studying
honeypots means to study the way an intruder think and the way it will attempt to break into a
computer network. During the last ten years, it has been the most used method by anybody who wants
to improve the techniques to secure computer resources. Know you enemy, and you will know how to
protect yourself from it.

During the last five months, I have worked on a new kind of honeypot architecture at the
University of Maryland. Classical honeypots have limitations due to their designs. Those limitations
falls in two categories : breadth of coverage and limit of the interaction. The purpose of my internship
was to create an innovative architecture that can improve those two limitations. To do so, I had to study
the many different types of honeypots, tests them, analyze them and criticize them.

The first chapter of this report explains what honeypots are, their history and the way they are
used. Hybrid honeypots will be introduced in the second part of this first chapter. I will also detail some
experiments I realized on the analysis of network attacks.

The second chapter deals with the Argusnet architecture set up at the University of Maryland. Then, I
will present the ArgusProxy project, its requirements and how I specified it using the Unified Modeling
Language.

Finally, in the third chapter, I will detail the current state of ArgusProxy and what will be done until the
end of my internship.

An overview of the progress of this internship is available in Appendix A as a Gantt diagram.

Julien Vehent - Attack redirection in Honeypots p-5/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

The University of Maryland
o

The University of Maryland, College Park, is a public research university and the flagship campus of the

University System of Maryland. Founded in 1856 , it is a 1,200 acre suburban campus composed of 270

: ﬁ F
L oy case buildings and located eight miles at the north of Washington, D.C.,

and 35 miles from Baltimore.

" The University consists of around 35,000 students and 6,000
& professors, in various majors, including Agriculture and Natural
Resources, Architecture, Arts and Humanities, Computer, Math,

and Physical Sciences, Education, Journalism, Life Science.

History

The University of Maryland was first an Agricultural College
founded in 1856. Only 34 students were enrolled in 1859. This number grew
when President Lincoln signed the Morill Land Grant Act providing federal

support for state colleges to teach agriculture, mechanical arts and military

tactics. The first women students enrolled in 1916. In 1917 Albert F. Woods
(1866 - 1948) was named president and created seven schools, each with its own dean : Agriculture,

Engineering, Arts and Sciences, Chemistry, Education, Home Economics and the graduate school.
C o g . [(EEEEE

In 1932, Testudo the turtle became the official Maryland mascot. Its bronze
version stands proudly in front of the McKeldin library, to touch its head is a
sign of luck.

In 2006, the revenue of the university reached $1,244,892,829. Today, the
University of Maryland is one of the nation's Top 20 public research

universities.

Julien Vehent — Attack redirection in Honeypots p.6/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

Information Assurance Laboratory

The Information Assurance Laboratory at the University of

Maryland is co-directed by Dr. Michel Cukier and Dr. Carol S. Smidts.

The laboratory focuses on four research threads:

1. Probabilistic Risk Assessment;

2. Modeling;

3. Bug and Vulnerability Identification Tools;

4. Empirical Studies.
Among others, these research activities are funded by National Science Foundation (NSF), National
Aeronautics and Space Administration (NASA), Nuclear Regulatory Commission (NRC), National
Security Agency (NSA), Defense Advanced Research Projects Agency (DARPA), Teradyne, Texas

Instruments Inc., Tedco, and Maryland Industrial Partnerships (MIPS).

The team of Michel Cukier

Michel Cukier is an Assistant Professor in the Department of Mechanical Engineering. He
received a physics engineering degree from the Free University of Brussels, Belgium, in 1991, and the
Doctor in computer science from the National Polytechnic Institute of Toulouse, France, in 1996.
His current research interests include security evaluation, intrusion tolerance, distributed system
validation and fault injection with a team of Ph.D, graduate and undergraduate students.
I took part of the Argusnet project, developed by Susmit
Panjwani, Stephanie Tan and Keith Jarrin, and mainly
maintained and improved by Robin Berthier as part of
his Ph.D. The purpose of this project is to develop an
architecture to monitor attackers and collect attack

data.

The Glenn Martin Hall, building of the Department of
Mechanical Engineering

Julien Vehent — Attack redirection in Honeypots p.7/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

Honeypot theory

+

« It is said that if you Know your enemies and Know yourself, you will not be imperiled in a hundred battles;
if you do not Know your enemies but do Know yourself, you will win one and lose one;

if you do not Know your enemies nor yourself, you will be imperiled in every single battle. »

Sun Tzu, The Art of War

Historically, the term “Honeypot” is not issued from the world of computer security. It's a widely
used concept in the spying world that refer to a set of techniques used to grab relevant and secret
information from a target by attracting it in a trap (usually a sexual trap, with the help of drugs).

In computer sciences, the term find its roots in the 80's with a book : "The Cuckoo's Egg" from Clifford
Stoll. As a system administrator at the Lawrence Berkeley National Laboratory, Stoll has, during
almost three years, followed and recorded the behavior of an intruder who was using one of his Unix
systems to relay attacks and target several governmental agencies. To locate him, Stoll has spent ten
months recording every action on the system and was finally able to isolate the source of the attack.
After a while, the intruder, Markus Hess, has been arrested. He was working for the KGB. “The

Cuckoo's Egg” relates this story and has built the foundations of the attacks observation techniques.

1.1 Why Honeypots ¢

The first step to understand honeypots is to define what a honeypot is. This can be harder than it
sounds because, unlike firewalls or Intrusion Detection Systems (IDS), a honeypot does not solve a
specific problem. Instead, honeypots are highly flexible tools that come in many shapes. They can do
everything from detecting encrypted attacks in IPv6 networks to capturing the latest on-line credit card

fraud. This flexibility made honeypots the cornerstone of the research in computer security.

Lance Spitzner, a senior security architect for Sun Microsystems, Inc., and an acknowledged authority

Julien Vehent — Attack redirection in Honeypots p-8/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007
in security and honeypot research, gives the following definition of Honeypots :

"A honeypot is an information system resource whose value lies in unauthorized or illicit use of that

resource." [6]

The information provided by a honeypot is extremely interesting for anyone whose interest lies in
information security. It could be security software companies (anti-virus editors are taking a huge
interest in honeypot techniques), Internet providers that need to oversize their networks because of
automated attacks that consume their resources (to detect and block those attacks is very interesting for
them) or simply companies that consider the understanding of the threats that aim their information

systems as important.

But the most important work around honeypots is done by the research community. Some projects, like

the Honeynet project [5], are trying to centralize the efforts and share the techniques.

1.1.1 The Honeynet Project

“The Honeynet Project is a non-profit volunteer, research organization dedicated to improving the
security of the Internet at no cost to the public. All of our work is released as and we are firmly committed
to the ideals of OpenSource. Our goal, simply put, is to make a difference.” [5]

The Honeynet project has been started by Lance Spitzner. This project have three main goals :

1. Awareness : Explaining the threats and vulnerabilities that exist in the Internet today. The goal
of the Honeynet Project is to provides information so people can better understand they are a
target, and understand the basic measures they can take to mitigate these threats.

2. Information : They provide details to better secure and defend resources. Historically,
information about attackers has been limited to the tools they use. The Honeynet Project
provides critical additional information, such as their motives in attacking, how they
communicate, when they attack systems and their actions after compromising a system.

3. Tools : For organizations interested in continuing their own research about cyber threats, the

Honeynet Project provides the tools and techniques they have developed.

Since 2002, the Honeynet Project has been the central meeting point of all the honeypots researchers

Julien Vehent — Attack redirection in Honeypots p-9/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

over the world. The community grows in many country but in France, the French Honeynet Project

ended in July 2007.

1.2 Honeypot Types

Conceptually, almost all honeypots are working the same way. They are a resource that has no

authorized activity. They do not have any production value. Theoretically, a honeypot should see no

traffic because it has no legitimate activity. This means any interaction with a honeypot is most likely

unauthorized or malicious activity. Any connection attempt to a honeypot is more likely a probe, attack,

or compromise. While this concept sounds very simple, it is this very simplicity that gives honeypots

their advantages.

1997

19348

1994
Mellacade

19494

1994
Haonaynel

Prajact
2000

2001

2002

2002
Hanaynat
esearch Allance

2003

004 2004

Hanayw all
Raa

20035

1947
Daceplion
Taalkit

1938

Cyb=rCaop
Siing

1998
BackOllicer
Friendly

20m
Gen llHaneynets

2003
Snarklnline
Sebek
Re lirzwall
Wirlual Haneynels

2005
Philippins
Hanaynai

Prajael

Figure 1: honeypots projects since 1997

Julien Vehent — Attack redirection in Honeypots

1.2.1 Low-Interaction Honeypots

In 1997, the first usable tool allowing to fake computer's
vulnerabilities is released. The Deception Kit [11] is a set a Perl
scripts that re-create the basic behavior of several well-known
daemons. When an intruder seeks for a particular vulnerability
and reach a computer that hosts The Deception Kit, he has the
vision of an exploitable system and launches his attack. Of
course, nothing happens on the system because the kit is just
able to reply pre-recorded answers but this is enough to record
the communication and learn from it. This gives the
administrators a delay to fix their systems. The idea of using a
set of scripts to fake a service, limiting the number of possible
responses, provides only a low level of interaction between the
intruder and the faked system, so we use to call this kind of

architecture Low-Interaction Honeypot.

p.10/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

12.2 High-Interaction Honeypots

During the following years, honeypots will become more popular and, by the way, more
sophisticated. The use of real systems, dedicated servers set up to be attacked, will improve the
gathering of information. In such systems, the interaction is not limited to pre-recorded answers so the
intruder goes more deeply and, because everything is recorded, monitored and studied, gives more
relevant information on the behavior of the attacker. These systems are called High-Interaction
Honeypots.

Those two approaches are different and complementary. When Low-Interaction Honeypots allow
to cover a wide range of connections with few information on each, High-Interaction Honeypots provide
more accurate information on a specific kind of attack but need to be re-initialized after each attack.
Moreover, honeypots are no different than other technologies, they also have an associated risk.
Specifically, honeypots have the risk of being taken over by an attacker and being used to attack other
systems. This risk is small with Low-Interaction Honeypots but high with High-Interaction Honeypots.

In both cases, it's important to take care about it and assess the risk before setting up a honeypot.

1.2.3 Hybrid Honeypots

The idea of combining different types of honeypots has occurred a few years ago. The temptation
of using the coverage capabilities of Low-Interaction Honeypots and the interaction capabilities of
High- Interaction Honeypots has driven the research community on a new field of research : Hybrid
Honeypots.

One of the first work on Hybrid Honeypots has been presented in the paper : « A Hybrid Honeypot
Architecture for Scalable Network Monitoring », written by the University of Michigan and Google [1].
This new architecture uses a Low- Interaction Honeypot as a front end, a High-Interaction Honeypot as
a back end and two other new components : a redirection engine and a checksum based decision
engine. The goal of the first one is to redirect connections like, what a NAT proxy does and the goal of

the second one is to detect new attacks. An incoming connection is handled by the Low-Interaction

Julien Vehent — Attack redirection in Honeypots p. 11/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

Honeypot, then the decision engine processes every packet of the connection and, if the connection is

interesting enough, sends a redirection order to the redirection engine.

This architecture gives the tremendous advantages of the selection : by computing a checksum on every

incoming packets, they limited the number of connections that the High- Interaction Honeypot receives

and, by the way, deeply decreased the analysis time.

1.3 A New Hybrid Honeypot

The first assumption in Hybrid Honeypots is redirecting an active connection from a

Low- Interaction Honeypot to its new target. This is difficult because the attacker must not detect the

redirection and because, in the case of the TCP protocol, a connection is not designed to be broken.

Attacker Proxy Sensor

SY N (45) o

—-____”
Sy N-ACK 148 Y M-ACK 4

Time - nm.(14a) ek i
S Il”m—-. RPC Bind 112} i
H

As
ﬁwwam Target

SY N 48)
"'_'—"v-l'.m

SIEK 140}
T «
RPC Feq. _________*
FJN?-!JJ?MI—.' ___F‘f%fﬂl_’
——p

A o APC HindAck (100) - RPG E:: .:;: 100}
e _

FST {40} __.—-' -—::——%‘:%___*
H

Figure 2: TCP redirection in hybrid honeypot

Figure 2 shows the redirection process like it's presented
by the University of Michigan in their work [1]. The
Sensor is the Low-Interaction Honeypot and the Target is

the High-Interaction Honeypot.

When the decision to redirect the communication is
taken, a new TCP connection is initialized with the
Target and the redirection engine replays the packets of
the recorded connection. Then, the packets received from
the attacker are redirected to the Target and not to the

Sensor anymore.

This is a very interesting design but, like I will discover later, it breaks the principle of robustness on

which most of the Internet protocols are based. Dynamically redirecting a connection is a difficult

problem to solve. When it's quite easy to do with a basic protocol like UDP, a connection oriented

protocol like TCP is definitely not designed to be dynamically redirected (sequences numbers, ack

packets and so are adding complexity) and a ciphered communication is almost impossible to redirect.

Moreover, there's some basic assumption to take care about (see also [2]) :

Julien Vehent — Attack redirection in Honeypots

p.12/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

"""“lff"" = Invisibility : the activity of the redirection engine

“o,

>< must be completely transparent to the attacker. This
g“,;/mk) means that the redirected connections must not carry
/ "] roneve any fingerprint of any manipulation;

proxy

> Scalability : even if the number of connections

> redirected is low, the redirection engine must be

argusnet designed to handle a high number of connections at the

same time, especially when redirecting a connection. If

Figure 3: basic hybrid honeypot architecture the latency is too high, a skilled attacker could detect it
and cut the connection;

2 Recording : in order to replay and study attacks later, connections must be recorded. This is

very consuming in computing times and memory usage.
Figure 3 shows a basic example of the Hybrid Honeypot 1 have designed during the first days of my

internship.

1.3.1 Attack selection

In order to select and redirect attacks, we need to define the concept of attack extremely
precisely. When considering network and computer attacks, we can isolate three main models of
behaviors classified by their interactivity levels :

¢ One packet attack

A single datagram (UDP or ICMP most of the time) carries the entire attack. UDP and ICMP

protocols do not require the establishment of a connection (handshake) so the first packet

received is generally the entire attack.
example : SqlSlammer, a 376 bytes payload in a UDP packet that aims SQL Server 2000.

The detection of this kind of attack doesn't require any interaction, a simple sensor on the

network can receive it.

+ Connection oriented attack

In this model, a response from the targeted host is required for the attack to succeed. This is

Julien Vehent — Attack redirection in Honeypots p. 13/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

typically the behavior of port scanners : they attempt to connect to a list of TCP ports using
synchronization packets and mark as open a port that answers with a synchronization
acknowledgment packet.
Because of the absence of payload, faking a basic interactivity is very easy to do by simply
binding a port and waiting for connections.

+ Application dependent attack
This targets a high level protocol, usually over the operating system layer. In this model, the
attacker needs to establish a complex communication with the target, involving, sometimes, the
use of several upper level protocols and fragmented packets.
This means that, to detect these attacks, we need to fake a real service with a most important

interactivity level.

1.3.2 What is an interesting attack ?

Before connecting a honeypot system to the Internet, it's very important to define what we want
to study. The persistent noise on the Internet consists of many different kinds of worms, lost packets,
scans and so on. A honeypot will collect all of them. The interesting thing with Hybrid Honeypots is that

they give the ability to select the information we want to study.

Basically, an interesting attack could be whatever we want. But, regarding the concept of attack, we can

reduce this list to the following:

1. An interesting attack belongs to one of the three categories of attack : one packet attack,
connection oriented attack and application dependent attack. This means that the selection

engine should be configured to select an attack included in these categories.

2. The second parameter is the depth of the analysis : how far does the engine go when analyzing
the packet/connection. For example, a security software editor will be interested by an extremely
wide coverage capability in order to detect very quickly an unknown attack. In this case, a
checksum inspection is efficient enough. A research laboratory could be more interested by

selecting attacks that aim a very specific version of the NetBios protocol in order to perform a

Julien Vehent — Attack redirection in Honeypots p- 14 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

study on the new Windows Vista implementation of this protocol. Here, a more sophisticated

engine which could include an IDS, a checksum database and so on, should be more relevant.

With those two parameters, the attack level and the analysis depth, we can determine what an

interesting attack is for a specific study and build a specific decision engine for it.

This adds a requirement for the decision engine : it has to be as modular as possible, regarding these

two parameters.

1.3.3 Unknown attacks selection techniques

Considering the initial postulate that we want to build a general decision engine in order to
detect unknown attacks, and redirect them from the Low- Interaction Honeypot to the High- Interaction
Honeypot, 1 will know present a set a techniques to determine if we have already seen or if we already
know the behavior of an incoming connection.

1. One of the first techniques easily usable is the checksum check : set up a database with
checksums of known payloads and compare an incoming payload with the entries of the
database. This is quite simple to implement but not really reliable because :

+ An attack can start with a known payload and then switch to others techniques just after;
¢ A same attack can use several variants, the checksum will not detect them as similar.
The checksum method is efficient when the goal of the study is to detect new worms (including

variants) and automated vulnerability scans (Metasploit, Nessus, ...).

2. A solution based on tools could be to use an IDS as a negative detection engine. If a
communication is not detected as a known attack, we can consider it as an unknown attack and
redirect it. This works because, in a honeypot network, the whole traffic is attacks.

IDSs are using powerful techniques to detect attacks, they can also provide useful information
regarding the connection (type of the attack, operating system targeted and so on...).

3. While I was working on r-contiguous string inspection [3] and a comparative analysis of
vulnerability check and vulnerability exploit, I found that a connection can also be represented

by its sequence. This is the connection sequences strings method I will explain now.

Julien Vehent — Attack redirection in Honeypots p. 15/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

1.3.4 Connection sequences strings analysis

A packet sequence is a string created using the flags (in the case of TCP), the size and direction

of each packets that compose a communication.

{ FEEE)30110001431011000230001100045510110003600011000931011000970

A typical sequence string (tcp 445). It's composed of, for each packet, 6 tcp flags (in purple), a size in bytes (in
green) and a direction (O = coming from outside, | from inside, in red). The string is composed of all the packets of

the communication.

By comparing the sequence of an incoming communication with the recorded sequences, it's possible to

regroup connections. I have made some experiments and the results seems to prove that sequence string

inspection is relevant (Figure 4).

packets 15722
connections 1850
avg pkt/con 8,5
nb of identical sequences sequence string %
257 0110001910011000143101100023000110004551011000360001100093101100097001100093 13,89%
224 0110001910011000143101100023000110004551011000368001100093101100097001100093 12,11%
219 0110001910011000143101100023000110004551011000384001100093101100097001100093 11,84%
135 0110001910011000143101100023000110004551011000376001100093101100097001100093! 7,30%
113 0110001910011000143101100029000110004551011000424001100093I 6,11%
108 0110001910011000143101100023000110004551011000396001100093101100097001100093| 5,84%
102 0110001910011000143101100029000110004551011000428001100093I 5,51%
66 0110001910011000143101100022200110004551011000276001100093I 3,57%
61 0110001910011000143101100023000110004551011000400001100093101100097001100093 3,30%
60 0110001910011000143101100023000110004551011000412001100093101100097001100093! 3,24%
56 0110001910011000143101100029000110004551011000440001100093I 3,03%
53 0110001910011000143101100023000110004551011000366001100093101100097001100093 2,86%
39 0110001910011000143101100029000110004551011000444001100093I 2,11%
30 0110001910011000143101100026000110004551011000406001100093I 1,62%
30 0110001910011000143101100023000110004551011000382001100093101100097001100093 1,62%
29 0110001910011000143101100029000110004551011000434001100093I 1,57%
27 0110001910011000143101100023000110004551011000380001100093101100097001100093 1,46%
24 0110001910011000143101100029000110004551011000450001100093I 1,30%
20 0110001910011000143I 1,08%
15 01100020300110001551011000234001100046710110002880011000105! 0,81%
90,16%
[nbofuniquesequences | 110 [595% |

Figure 4: sequence string inspection results for TCP connections on port 445
Those results show that more than 90% of the connections are seen more than one time. But they also
show that most of the connection strings are very similar, only a small difference in the sizes seems to
differentiate them. Thus, I tried to find the “neighbors” of the most seen sequence by using a growing
variance in packets size (Figure 5). This graph shows that by introducing a variation of 15% in packets
size, we can match almost 6 times more sequences. The order of the packets in the communications are
identical, only the sizes change. To confirm those results, I took four sequences and a variance of 20%,

Julien Vehent — Attack redirection in Honeypots p- 16 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

and I searched for their neighbors in nine . .
Sequence matching evolution

months of malicious activity. The results (match a specific sequence)

1200 e —
. . a u] o
presented in Figure 6 show that more than 1(1)82 =
. . . 900 —
80% of the connections are similar. 800
700 ——o o
. o pr . @ nb of similars
This method of classification can help —d sequences

to detect and select unknown attacks. But this

technique can also return a high number of

L e s N B B B
12 345 6 7 8 9101112131415161718

variation of packet size acceptance

quantity of connections matched
g

false positive results. That should be

evaluated. A more detailed document about Figure 5: connection sequence matching using a variance in
packet size

this work is available in Appendix B.

dump nb of matched sequences |nb of sequences on port 445
609 4535 7329 61,88
610 2031 2601 78,09
611 3771 4307 87,56
612 6104 6794 89,84
701 518 744 69,62
702 3280 4771 68,75
703 9304 10142 91,74
704 10176 11528 88,27
705 1208 1398 86,41
average 80,24
Cumulated results
12000
11000
10000
@ 9000
E 8000
g 7000
T 6000 Sl s
.g 5000 [25:(sequences on port
o 4000
c 3000
2000
1000
0 T T T T T T T 1
609 610 611 612 701 702 703 704 705
Month (y/mm)
Figure 6: cumulated sequences inspection results
1.3.5 The interaction limit problem

When dealing with low-interaction honeypots, an important issue is their interaction limit. While
I was working on the differences between vulnerability checks and exploits, I discovered that a software
like HoneyD (probably the most popular low-interaction honeypot) stops to answer to an attacker when

its interaction limit is reached. This means that the honeypot will acknowledge the incoming packets but

Julien Vehent — Attack redirection in Honeypots p- 17/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

will not provide more information nor cut the connection (Figure 7).

A skilled attacker will detect this behavior and suspect that he's actually targetting a honeypot, and
then probably cut the communication. So, we need a mechanism to detect when a low-interaction
honeypot has reached its interaction limit and then intercept the next packet while asking the decision

engine to make a decision immediately. This is what we call the interaction limit problem.

Figure 7: interaction limit with Honeyd faking a Windows 2000 SMTP daemon

Source —>Destination Proto. Info

128.8.37.120->128.8.37.111 SMTP Response: 220 win2kpro Microsoft ESMTP MAIL [...]
128.8.37.111->128.8.37.120 TCP 44488 > smtp [ACK] Seg=1 Ack=108 [...]
128.8.37.111->128.8.37.120 SMTP Command: ETRN test.nessus.orgr
128.8.37.120->128.8.37.111 TCP smtp > 44488 [ACK] Seg=108 Ack=23 [...]
128.8.37.111->128.8.37.120 SMTP Command: ETRN test.nessus.orgr
128.8.37.120->128.8.37.111 TCP smtp > 44488 [ACK] Seg=108 Ack=45 [...]
128.8.37.111->128.8.37.120 SMTP Command: ETRN test.nessus.orgr
128.8.37.120->128.8.37.111 TCP smtp > 44488 [ACK] Seg=108 Ack=67 [...]

(in gray, the TCP handshake, in bold the SMTP banner and then, the 3 same request sent by the attacker).

1.3.6 Conclusion

We can summarize the Honeypot tools as follow : Low-Interaction Honeypot provides scalability
at the cost of the depth of the information gathered, High-Interaction Honeypot provides very detailed
information but need to be re-initialized after each attack. Between those two stands the Hybrid
Honeypot. It mixes the scalability of Low-Interaction Honeypot with the depth of High-Interaction
Honeypot. Hybrid Honeypot relies on two engines, one to select interesting attack, the Decision Engine,
and one to redirect those attacks to a target of choice, the Redirection Engine. By combining these
techniques, Hybrid Honeypot provides an efficient method to filter attacks in order to focus only on

specific ones, and thus reduce the analysis time and speed up the reactivity.

With this knowledge, I started to work on a Hybrid Honeypot software engineering project called

ArgusProxy. The work I did on this project is described in the next chapter.

Julien Vehent — Attack redirection in Honeypots p. 18/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

The Argusproxy project
<

« Visualize this thing that you want, see it, feel it, believe in it. MaKke your mental blue print, and begin to build. »

Robert Collier

2.1 The Argusnet Network

ArgusNet is an architecture to run live experiments in the field of system and network security.
The goal of this architecture is to easily and securely deploy targets for attackers, such as honeypots, in
order to collect live attack data and monitor experiments.
ArgusNet was initially developed by Susmit Panjwani, Stephanie Tan, Keith M. Jarrin at the end of
2004. Then in January 2007, an enhanced version of the architecture was built by Robin Berthier and
Daniel Ramsbrock to face new challenges, such as better protection for the management network,
stronger reliability for data collections, and easier solutions to backup and update the architecture and
experiments. The architecture is made of two main parts (see Network 1):
1. The honeypot network: where all the experiments are deployed.
2. The management network: where all the data collection, data monitoring and administration
take place.
The strict separation between these two networks allows operators to gather data and closely monitor
the experiments without being detected by attackers. The three major pieces of the architecture are:
1. the Honeywall: from the Honeynet project, it is used for several purposes:
+ to collect network data (dump files and flows) and system data;
+ to limit outbound connections from honeypots;

+ to analyze and monitor the data collection through its protected web interface.

Julien Vehent — Attack redirection in Honeypots p-19/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

2. the Honey-Firewall: based on IPCop, it is used:
+ to provide IP to honeypots with its DHCP server functionality;
+ to hide and protect the management network from the honeypots;
¢ toroute management traffic to administrate the honeypots;
¢ to forward specific traffic (syslog, ghost) from the honeypots to specific management
machine;

3. the Lab-Firewall: also based on IPCop, it closes the management network perimeter and
protects the management machines. It also provides IP addresses to the management network
and VPN functionality for remote access.

There are other pieces like a Backup server (for architecture and experimental data), a Syslog server
(collect system information), a server to re-image the honeypots, an Argusnet Master (host a Trac
website for everything related to Argusnet) and a Nagios server (to monitor honeypots availability).

ArgusNet v2 Diagram
Daniel Ramsbrock — Robin Berthier
01/17/07

Internet / Campus

Attack Traffic

(Soemsd)
Honeywall
Bridge 2] (Honeynet) N
Data Control
lab-firewall Data Collection
DHCP

Honey-firewall
DHCP

router

Management
Traffic Honeypots

router N \

128.8.37.97
Students

VLAN S5 (Management Network)

d9 99y

Argusnet Master Backup Server File Server Syslog Ghost Nagios

Network 1: Argusnet version 2 (IP addresses are hidden)

Julien Vehent — Attack redirection in Honeypots p-20/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

2.1.1 Argusnet experiments

The Argusnet network has been built to run experiments at the University of Maryland. During
the last three years, numerous studies have been realized by Dr. Cukier and his team on this network.
When I met Dr. Cukier (during the CRISIS '05 at the Bourges school of engineering), he was presenting
the results of their works to determine if a correlation exist between port scans and attacks [7]. This
study was one of the first done using Argusnet. Some others example of research projects can be read in
[8] and [9]. The experiment presented in [9] is particularly interesting because it tend to analyze the
human behavior of an attacker that gain an access to a Linux system.

“To build a profile of attacker behavior, we looked for specific actions taken by the attacker and

the order in which they occurred. These actions were: checking the configuration, changing the

password, downloading a file, installing/running rogue code, and changing the system
configuration.”
Argusnet is a very efficient architecture to study malicious behavior and improve many security
techniques. Then, by helping to create a Hybrid Honeypot architecture with the ArgusProxy project, my

goal was to improve Argusnet and open new research opportunities.
2.2 ArgusProxy : software engineering

To describe the specifications of the system, I used the Unified Modeling Language (UML) and

created a set of diagrams that represents the different parts of the ArgusProxy software.
2.2.1 Requirements

Based on the information I gathered and presented in Chapter 1, I showed that the architecture
needs to provide fast network response capabilities that can only be done in the deepest layers of an
operating system. That's why I decided to work with the Linux kernel and, more specifically, with the

Netfilter engine of the kernel.

Julien Vehent — Attack redirection in Honeypots p-21/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

Then, I designed a basic architecture from a very high point of view (Figure 8). In this architecture,
ArgusProxy is split in two independent modules : the Redirector and the Decision Engine.
The goal of the Redirector is to handle connection, record them, send information to the decision engine

incoming and replay a specific connection to a specific

packet

host if asked.

< l—
ipacket| |conn. =
record| | state

REDIRECTOR

The goal of the Decision Engine is to run tests

on incoming packets, keep a score for each
incoming connections, send a message to the
—] Redirector when th f ti
edirector when the score of a connection
exceeds a limit and control the interaction limit
of a low-interaction honeypot.

Plugged together, those two engines should be

able to manage a wide range of connections at

network flow level 1 the same time, providing a new kind of
node j falarm
network flow level 2

- gume database architecture that, as far as I know, has never

Figure 8: basic hybrid honeypot architecture
been done before.

2.2.2 Activity Diagram

In UML, an activity diagram represents the business and operational step-by-step work flows of
components in a system. An activity diagram shows the overall flow of control. This diagram is probably
the most useful for a developer. The reading starts at the top left corner with an incoming packet. Going

down the diagram, it's easy to follow the different operations processed on the packet (Figure 9).

The first bifurcation separate redirected packets from the rest of the packets. A packet which is part of a
redirected connection will follow the steps in the green box. The other packets will be routed to the main
part of the engine. In this part, they are first recorded, then forwarded to their destination (the yellow

box) while a copy is sent to the redirection engine (the purple box).

Julien Vehent — Attack redirection in Honeypots p-22/68

Master Management de la Sécurité des Systéemes Industriels et des Systémes d'Information - April/September 2007

When the decision to redirect a connection is taken, we reach the blue box at the bottom of the diagram.

The connection is replayed to its destination and its state is recorded in the different tables.
incoming packet
compare with
redirect table
! record packet
‘ [not found] in peap format
compare with
’ stateful table

[found] [not found]

free original packet
(will go to its destination
by himself)

[found] f forward packet
to script

compare DPORT with
"scripts dport list"
e el compare DPORT with
"host dport list”
found] ’ [not found]

create
"no interaction

copy packet

A

compute
interaction
limit

forward packet
- tohost

port"

forward packet
to port

[not reached [reached]

N

{ do nothing] d;?:lr:IE:Jn

Figure 9: ArgusProxy activity diagram

Julien Vehent — Attack redirection in Honeypots p- 23 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

2.2.38 Deployment Diagram

In the Unified Modeling Language, a deployment diagram serves to model the hardware used in

system implementations, the components deployed on the hardware, and the associations between those

components. The elements used in deployment diagrams are nodes (shown as a cube), components

(shown as a rectangular box, with two rectangles on the left side) and associations.

The deployment diagram below is an improvement of Figure 8, it gives a more accurate presentation of

the hybrid honeypot architecture.

Network card |

network flow

Redirector)\

interaction <> decisions

redirect

Decision Engine

[MDS

table

limit
transfert dumped data

database
connections connections |

: database

Sequences
database

Regex
database

Scores
database

Argushet
hosts
database

record state
database database
n
e
t Low-nteraction Honeypot
w
0 cases {1,2,3} . scripts
r database
k

£o0— =

High-Interaction Honeypot

case {5}

network flow

 /
)

case {3} | no-interaction

port binding

Figure 10: ArgusProxy Deployment diagram

I have also made some smaller diagrams to describe, from a closer point of view, the behavior of the

software while processing incoming packets. I will present them in the next part.

Julien Vehent — Attack redirection in Honeypots

p. 24 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

2.24 Modules interactions

The Redirector and the Decision Engine need to share some information regarding to incoming
connections. This implies the needs of a shared space in the system and a set of signals (for the Decision
Engine and the Redirection to exchange notifications). The diagrams below present a vision of the

architecture from a high level.

2.24.1 Redirector
The Redirector receives every incoming packet from the Netfilter Queue system via the library
LibNetfilter_Queue. It records every packet both in a PCAP file and in a shared memory. It replays
recorded communications when the Decision Engine sends a replay signal. The regular behavior for a
non-redirected communication is to forward (or let go) the packet to its destination, which is a low-
interaction honeypot, like HoneyD. HoneyD then decides where to redirect the packet (script, host or a
simple port). A signal is sent to the Decision Engine to notify it that a new packet has been received and

needs to be processed (Figure 11).

II _Dﬁ%r decision When the Redirector receives a REDIRECT signal, it

- engine
receive redirector selects a new destination in the redirect table and
replays the whole communication to the new
forward 3 X X . 3
destination in Argusnet. The communication could be
HoneyD recorded in a decision

Figure 11: Redirector general behavior database or Slgnia engine

just dropped from the Redirector memory (Figure 12).

redirector

Once the replay is done, the Redirector acts as a NAT
replay

(Network Address Translation) proxy in the communication.

It handles the incoming packets from the attacker to send | ArgusNet

them to Argusnet and get answers from Argusnet to send Figure 12: Connection replaying
them to the attacker. This is complex because the attacker must not know that the communication has

been redirected and that he's not speaking with the low-interaction honeypot anymore. When I did that,

Julien Vehent — Attack redirection in Honeypots p.- 25/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

I didn't realize that replaying and faking TCP connections will be, from far, the most difficult part of

this project.

2242 Decision Engine
The Decision Engine is started each time it receives a notification signal from the Redirector. It
gets the new packet from the shared memory and starts the 3 sub-engines (MD5, EXPR, SEQUENCE)
to process this packet. When the sub-engines send their status responses, the Decision Engine makes a
decision based on the values received and the history of the connection and sends the decision to the
Redirector (signals REDIRECT or CLOSE). Figure 13 shows the general architecture of the Decision

Engine.

shared
emory,

decision
engine

4.signal

redirector

3.status

Figure 13: Decision engine general architecture
The modularity of this engine rely on the sub-engines that can be plugged to it. In Figure 13, the three
engines are a checksum comparison engine that use the MD5 algorithm, an regular expression module
that compare ASCII words with a database of known words and a connections sequences inspection
module (like the one I presented in chapter 1.3.4). An incoming packet is first linked to its history and
then processed by the chosen tests. The Decision Engine make its decision regarding the results of the

tests and sends the corresponding signal to the Redirector.

Julien Vehent — Attack redirection in Honeypots p. 26 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

2.24.3 Shared memory

To store information in memory, I chose to use a global Balanced Binary Tree to store
connections and one Singly-Linked List (for each connection) to store the packets of the connection.
Balanced Binary Trees are slow in writing mode because they need to be equilibrated at each writing
but they give a very high speed access to information in reading mode. The time is an important
problem because the attacker must not detect the redirection, and this last process imply the reading of

data from the shared memory.

Thus, by using together the Balanced Binary Tree and Singly-Linked Lists, I built a reliable

architecture to store both packets and information regarding a connection.
The information stored are :

1. Binary Tree Key : a tuple composed of the source IP address, the source port, the destination IP

address and the destination port (ex : 82.54.165.9:5122:128.8.37.121:25);

2. Binary Tree meta-information : a boolean value set when a connection is redirected, a boolean
value set when a connection has been replayed to Argusnet, a socket to access a connection
between ArgusProxy and an Argusnet host, a raw socket used to reply packets to the attacker,
the Singly-Linked List to record connection packets, a thread to listen for replied packets from

Argusnet and a time value to delete out of date entries.

B-Tree
root

< tuple <E:ata structure < < tuple <{:ata structure <
A B B
K tuple | data structure tuple | data structure

=0l

Figure 14: ArgusProxy memory storage using B-Tree and Singly-Linked Lists

Julien Vehent — Attack redirection in Honeypots p-27/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

2.2.5 Documentation
To ensure that my work would be resume and continued after I left the University, the writing of

an exhaustive documentation was part of the requirements.

I have used the doxygen syntax all along the project to build
the documentation. Doxygen is probably the only serious documentation project available today. It

provides a complete set of tools to transform code comments into a readable documentation.

The figure below represent the “process_pkt” function and sub-functions of the software (Figure 15).

This figure has been generated using Doxygen and the comments I have put in the source code.

store_packet

in_cksum

get_current_struct
-

acknowledge_tcp
has_been_replayed
E3

create_pcap_filename

init_pcap_context

Figure 15: Process_pkt function and sub-functions called for each packet

All the work I did around ArgusProxy is also stored in the Trac website of the laboratory. This
includes the subversion repository (that also contains the code I wrote to study the sequence inspection),
the wiki pages and the project management information that I will present on the next section of this

chapter.

Julien Vehent — Attack redirection in Honeypots p. 28 /68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

2.3 Timetable

The original version of the development phase has been planned to be done within 45 days. I
have first planned to deploy a beta version of the engine at the beginning of August. During the months
of June and July, I kept the progression quite according the original timetable. But when I reached the

replay engine, I realized I wouldn't do it on time.

I have made a mistake by thinking that I could code a TCP engine in 9 days. But quickly, I realized that
coding a TCP engine will not be as easy as what I had thought. So, I had to come back to a new
modeling phase and prepare more accurately this part. Trying to code it without a good preparation was

definitely too hard. Instead of spending 9 days, I spent almost 30 days on it (see Appendix C).

2.3.1 Gantt diagram

The Gantt diagram below detail the development of the Redirector.

0 5 10 15 20 25 30 35 40 45 50 55 60 65

—

Y

1 engine
structure

2 conn,
track

3 B-Tree

Pcap
4 recording

Linked|
5 lists

TCP Connection TCP Connection
6 replaying replaying

memory
usage

7 impro-

vement 7

Test
8 beta 0.1

7j. 4j. 4j. 7i. 4j. 10j. 9j. 13j. 7i.

Figure 16: Gantt diagram for the ArgusProxy Redirector

Julien Vehent — Attack redirection in Honeypots p-29/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

What is not shown on this diagram is the bug correction phase that will stand during the month
of september. During this months, I will improve the architecture and implement the last features. So,

the Redirection engine of ArgusProxy will finally be a 95 days project.

2.4 Technical issues

The goal of this report is not to detail deeply the way I coded ArgusProxy (the most interesting

functions are available in Appendix D) but, when coding in C, there's some interesting issues to discuss.

Despites its popularity, the C language has been widely criticized. Such criticisms fall into two broad
classes: operations that are too hard to achieve using basic C, and undesirable operations that are too
easy to accidentally invoke while using C. Putting this another way, the safe, effective use of C requires
more programmer skill, experience, effort, and attention to detail than is required for some other

programming languages.

Because ArgusProxy was my first software engineering project of this size, I chose to rely on higher level

libraries for the critical sections of code.

For the Connection State checking and the hook of incoming connections, I used the Netfilter library.
Despite the fact that Netfilter developers are amazing coders but not very efficient documentation

writers, I won a precious time by re-using Netfilter's capabilities.

For example, the code below requests the Netfilter system to check the state of a connection (both TCP

and UDP works).

/*! nfct_query - send a query to ctnetlink

\param[in] h: library handler
\param[in] NFCT_Q GET: query type
\param[in] ct: data required to send the query
*
* For query types:
* NFCT_Q CREATE: add a new conntrack, if it exists, fail
. NFCT_O_CREATE_UPDATE: add a new conntrack, if it exists, update it
* NFCT_Q UPDATE: update a conntrack
* NFCT_Q DESTROY: destroy a conntrack
* NFCT_Q GET: get a conntrack
*
*
*

On error, -1 is returned and errno is explicitely set. On success, 0
is returned.
*/
errno = 0;
conn_state = nfct_query (cth, NFCT_Q_GET, ct);

Julien Vehent — Attack redirection in Honeypots p-30/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - April/September 2007

Regarding the Balanced Binary Tree and the Singly-Linked Lists, I have tried first to code them by
.l" myself but, quickly, I have found that the Gnome Library [4] provides a far more efficient

.. and secure implementation of both of them.

GNOME

More than that, this library re-implement a large number of widely used functions in a more secure way.
I have tried, when it was possible, to rely on them when I have seen they were not slowing down my

code.

As another example, the function below is used to store a packet in the Singly-linked list (in bold green)

of a specific connection in the Binary Tree (in bold blue).

/*_!
* get the b-tree key
*/
if (
TRUE != g_tree_lookup_extended(conn_tree, key_one->str, NULL, NULL)
&&
TRUE != g_tree_lookup_extended(conn_tree, key_ two->str, NULL, NULL)

/*! if doesn't exist, create it and init the whole structure
* as a value for this entry

*/
struct conn_struct *add_new_data;
add_new_data = malloc(sizeof (*add_new_data));

/*! get current time
*/
gint *curtime;
struct tms current;
curtime = g_strdup_printf ("$d", times (¤t));

/*! fill the structure

*/
add_new_data->access_time
add_new_data->redirected
add_new_data->hasbeenreplayed
add_new_data->socket
add_new_data->rawsocket
add_new_data->recordlist

curtime;
0;

0;

0;

0;
NULL;

/*! store the address of the payload as a new entry of the list
*/

add_new_data->recordlist = g_slist_append(add_new_data->recordlist, store);

/*! add the list to the tree, value contain the address of the first entry of the list
*/

g_tree_insert (conn_tree, key_one->str, add_new_data);

g_print ("STORING FUNCTION : entry created for %s\n",key_one->str);

The Gnome Library really provides a simplified access to high performance functions. It doesn't change
the algorithmic nor simplify the specification phase but provides a strong implementation of critical

features that usually require high skills to implement them. I can evaluate that the use of this library

Julien Vehent — Attack redirection in Honeypots p-31/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007
has divided by two the amount of time needed to code ArgusProxy.

Regarding the network functions of ArgusProxy, I chose to use the basic network capabilities provided by
the Linux operating system. If, for regular TCP communications, this architecture gives a very simple
manner to send and receive packets, this is a bit more difficult to do in the case of raw packets used to

send packets outside of regular communications.

There's almost no documentation on the Internet about raw sockets, most people are just using them to

create SYN flooders. So, I had to read the RFC 793 again and again to recreate a basic TCP stack.
One of the biggest problems was the TCP checksum computation, for two reasons :

¢ First, the TCP checksum is computed using a pseudo header that breaks the principle “TCP is
not aware of what is done under its layer”. In fact, the TCP pseudo header contains the IP

addresses of the communication, and this is a bit tricky to set up.

¢ Second, the checksum is a 16 bits word computed on the pseudo header, the TCP header and the
payload. The trick is that the main algorithm has been created several years ago and is not very
portable. So I spent several days to understand the steps to compute this checksum and, finally,

recode it before I can understand my mistakes.

I could also add the memory issues I had to deal with, especially regarding some data
communications between the HEAP and the STACK, many allocation problems and so on... I learned
from a C language professor here that this was the kind of problems every developers have to deal with

one day.

Julien Vehent — Attack redirection in Honeypots p.32/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

Tests & future work

*

At the time I'm writing these pages, ArgusProxy has just reached the first workable beta version.
The support of UDP protocol is not implemented yet and only one Argusnet destination can be use (I
should finish that during the next weeks).

I'm actually working with Robin Berthier to

e set up a test bed (see Network 2) using

] VmWare

machine #2 . .
. - EA j virtual machines. Before the end of the
- rgusProxy
intruder

VmWare month of August, we should have a
2000 serve

machine #1

VmWare
machine #3

workable network connected to the Internet.

Network 2: ArgusProxy VmWare network

Once the integration qualification done, I will work on operational qualification by studying the
behavior of ArgusProxy in a real environment. According to the V cycle development process (Figure 17),

this will certainly imply to re-code some parts of the software and correct some others.

theorical
analysis
umML
specification
architectural integration
specification qualification

off-contesxt unitary
tests - qualification

Figure 17: V cycle development diagram

validation
and release

Finally, the first final version of ArgusProxy

operational
qualification

should be released at the end of September if the

software successfully pass the performance qualification.

The decision engine used will still be minimal but this is

a part of the project we decided to ignore from the

beginning.

Julien Vehent — Attack redirection in Honeypots p.33/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - April/September 2007

Conclusion
Py

This internship has been an extremely interesting experience to me. During the last five months,
I had the opportunities to do things I wanted to do for years.

First, I have worked on a research project, which was new to me because of my major and
previous experiences. I am glad to have had the opportunity to discover “the other side” of computer
security. It was a bit difficult to learn how to think as a researcher. I understood, after a few weeks,
that the methodology to solve a problem is different from what I learned during my Master's degree. In
a company, the right way to go from A to B is to use the most efficient paths spending as little money as
possible. In a research laboratory, the same problem is solved when all the possible paths have been
studied and when it is proven that one of them is good.

Secondly, I have directed my first software engineering project from the very first steps of the
study to the release of the final version. This was an interesting experience and it gave me the occasion
to reuse what I learned in software engineering, programing, networks and systems classes during the
last two years. Creating a software from scratch has been challenging but I acquired a better
understanding of the need of precise specification to create secure softwares. This appear more
important to me because I experienced by myself the many problems that occurred during the
development phase.

Thirdly, this internship has been an amazing social experience. I have met so many people from
so many countries, it was (and it still is) really enjoying to share our points of views, experiences, and
cultures. Beyond the American way of life, I learned a lot from a social point of view.

The overall outcome of this internship is very positive, and I would like to thank one more time
Dr. Michel Cukier and Robin Berthier for having offered me the opportunity to work with them at the

University of Maryland.

Julien Vehent — Attack redirection in Honeypots p.34/68

Master Management de la Sécurité des Systemes Industriels et des Systémes d'Information - Avril/Septembre 2007

References

[1] Michael Bailey, Evan Cooke, David Watson, Farnam Jahanian, Niels Provos. A Hybrid
Honeypot Architecture for Scalable Network Monitoring. University of Michigan, Google Inc.
October 27, 2004

[2] Elie Bursztein. TCP Timestamp To count Hosts behind NAT. phrack #63.
http://www.phrack.org/archives/63/p63-0x03 Linenoise.txt

[3] David Duncombe,George Mohay, Andrew Clark. Synapse: Auto-correlation and Dynamic

Attack Redirection in an Immunologically-inspired IDS. Queensland University of Technology

[4] Glib Reference Manual, http://developer.gnome.org/doc/AP1/2.2/glib/index.html
[5] The Honeynet Project, http://www.honeynet.org

[6] Honeypots, by Lance Spitzner, http://www.spitzner.net/honeypots.html

[7] Susmit Panjwani, Stephanie Tan, Keith M. Jarrin, Michel Cukier: An Experimental
Evaluation to Determine if Port Scans are Precursors to an Attack. DSN 2005: 602-611

[8] Michel Cukier, Robin Berthier, Susmit Panjwani, Stephanie Tan: A Statistical Analysis of
Attack Data to Separate Attacks. DSN 2006: 383-392

[9] Daniel Ramsbrock, Robin Berthier, Michel Cukier: Profiling Attacker Behavior Following
SSH Compromises. DSN 2007: 119-124

[10] Niels Provos, Thorsten Holz, Virtual Honeypots - From Botnet Tracking to Intrusion
Detection, Addison Wesley Editions

[11] The Deception Toolkit, by Fred Cohen, http://all.net/dtk/dtk.html

Julien Vehent - Attack redirection in Honeypots p.-35/68

http://www.phrack.org/archives/63/p63-0x03_Linenoise.txt
http://all.net/dtk/dtk.html
http://www.spitzner.net/honeypots.html
http://www.honeynet.org/
http://developer.gnome.org/doc/API/2.2/glib/index.html

Master Management de la Sécurité des Systemes Industriels et des Systémes d'Information - Avril/Septembre 2007

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:

Figure 17

Julien Vehent

Figures
L

honeypots Projects SINCE 1997 i e e e e e e e 10
TCP redirection in hybrid honeypot.........coouiiiiiii e 12
basic hybrid honeypot architeCture..........c.coiiiiiiiiiii e, .13
sequence string inspection results for TCP connections on port 445.........c..ccccueeneeee. 16
connection sequence matching using a variance in packet size..........c.cc.ceeeieneennn... 17
cumulated sequences insSpection resSUltS..........covuiiiiiiiiiiiiie e 17
interaction limit with Honeyd faking a Windows 2000 SMTP daemon 18
basic hybrid honeypot architeCture..........c.coiiiiiiiii e, .22
ArgusProxy activity diagram........ccuueiiiriiiiiiiie e e e e e e e e e eas 23
ArgusProxy Deployment diagram...........oeuuiiiiiiiiiiiciiieiieece et e e e et e e e e 24
Redirector general behavior..........coouiiiiiiiii e 25
(OFo3abaT=ToinTo) ol 4= 0] Eo)7k T PN 25
Decision engine general architeCture............ccooooviiiiiiiiiiii e, 26
ArgusProxy memory storage using B-Tree and Singly-Linked Lists.............ccceeeeenne. 27
Process pkt function and sub-functions called for each packet...........ccccceeenennnnnenn. 28
Gantt diagram for the ArgusProxy RedirecCtor........cc.ccoiiiiiiiiiiiiiiiiiiiineceeen, 29

: V cycle development diagram..........cveeiiiiiiniiiiie et e e e e et e e e eanaanas 33

- Attack redirection in Honeypots p. 36/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Glossary
o

> Balanced Binary Tree : A binary search tree that attempts to keep its height, or the
number of levels of nodes beneath the root, as small as possible at all times.

»> Checksum : A checksum is a form of redundancy check, a simple way to protect the
integrity of data by detecting errors in data that are sent through a network.

> HoneyD : HoneyD is an open source computer program that allows a user to set up
and run multiple virtual hosts on a computer network. These virtual hosts can be
configured to mimic several different types of servers, allowing the user to simulate an
infinite number of computer network configurations.

> IDS : An intrusion detection system is used to detect many types of malicious network
traffic and computer usage that can't be detected by a conventional firewall. This
includes network attacks against vulnerable services, data driven attacks on
applications, host based attacks such as privilege escalation, unauthorized logins and
access to sensitive files, and malware (viruses, trojan horses, and worms).

> IP : Internet Protocol, the computer networking protocol used on the Internet

> Payload : In communication, telecommunications and information science, the payload
is the data, such as a data field, block, or stream, being processed or transported by a
protocol (like TCP or UDP).

> Singly-Linked Lists : A singly-linked list is a sequence of nodes, each containing
arbitrary data fields and a reference ("link") pointing to the next node.

> Subversion : Subversion (SVN) is a version control system (VCS) initiated in 2000 by
CollabNet Inc. It allows users to keep track of changes made over time to any type of
electronic data. Typical uses are versioning source code, web pages or design
documents.

> TCP : Transmission Control Protocol, a transportation protocol that is one of the core
protocols of the Internet protocol suite. This protocol guarantees reliable and in-order
delivery of data from sender to receiver.

»> Trac : Trac is an open source, minimalist, web-based project management and bug-
tracking tool, inspired by CVSTrac. It is developed and maintained by Edgewall
Software.

> UDP : User Datagram Protocol (UDP) is one of the core protocols of the Internet
protocol suite. UDP does not guarantee reliability or ordering in the way that TCP does.
Datagrams may arrive out of order, appear duplicated, or go missing without notice.

> Nessus : Nessus is a comprehensive vulnerability scanning program. Its goal is to
detect potential or confirmed weaknesses on the tested machines.

> Metasploit : The Metasploit Project is an open source computer security project which
provides information about security vulnerabilities and aids in penetration testing and
IDS signature development.

Julien Vehent - Attack redirection in Honeypots p.37/68

Master Management de la Sécurité des Systemes Industriels et des Systémes d'Information - Avril/Septembre 2007

A = Gantt

Appendix

University of Maryland, Department of Mechanical Engineering, Center for

Company: risks and reliability

Manager: Julien VEHENT

Start: April 3, 2007

Finish: September 28, 2007

WES |Nom Démarrer |Terminer |Travail Durée Mou Colt Assigné a
1 State of the art avr 3 avr & 4j 4j [v] v

2 docl ; attack redirection, state of the art and requirements avr 9 avr 9 4h 4h 1lj4h [v] v

3 Weekly meeting avr 9 avr 9 MiA MiA 124j 0 v, mc, rb
4 Docs & Tests : tcp redirection avr 9 awr 16 5j 5j 1lj4h [v] v

5 Weekly meeting avr 17 awr 17 MiA MiA 118j 0 v, mc, rb
[Docs & Tests . honeyd and snort avr 16 awr 24 (] (] 1lj4h [v] v

7 Weekly meeting avr 23 awr 23 MiA MiA 114j 0 v, mc, rb
8 attack selection in honeypots avr 24 awr 30 4j 4j 1lj4h [v] v

9 Weekly Meeting avr 30 awr 30 MiA MiA 109j 0 v, mc, rb
10 Comparative analysis of Checks and Exploits avr 30 mai 7 5j 5j 1lj4h [v] v

11 Weekly Meeting mai 7 mai 7 MiA MiA 104j 0 v, mc, rb
12 ArgusProxy: Algorithmic and UML specification mai 7 mai 21 10j 10j 1lj4h [v] v

13 Weekly Meeting avr 3 awvr 3 M MiA 128j u] jw, mc, rb
14 Connections Sequence: Analysis and Correlations mai 21 jun @ 12j 12j lj4h [v] v

15 = Argusproxy jun 6 sep 26 a5j 80j 1j 4h 0 v

15.1 Structure of the engine jun & jun 15 7i 7i 4h [v] v

15.2 Check connection state jun 15 jun 21 4j 4j 1j4h 1] v

15.3 Storage technigues for dynamic informations jun 21 jun 27 4j 4j 1j4h 1] i

15.4 Pcap recording jun 27 jui 7i 7i 4h 0 I

15.5 Replay/Rewrite connections jui & aol 17 30j 30j 4h 0 I

15.6 Basic Decision Engine aol 17 aoll 23 4j 4j 1j4h 0 I

15.7 MNetwark engine tests & validation aoll 23 aoll 30 10j 5j 1j4h 0 v rb
15.8 UDP support aoll 30 sep 5 4j 4j 1j4h 0 I

15.9 Multi-Argusnet destination sep s sep 12 5j 5j 1j4h 0 I

15.10 Operationnal qualification sep 12 sep 26 20j 10j 1j4h 0 v rb

16 internship report aol 31 aol 31 M/A MN/A 20j 0 v me, rh

I used the Open Source software “Planner”
generated by planner is too big to be copied here.

Julien Vehent - Attack redirection in Honeypots

to manage this project. The diagram

p. 38/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

B = Connections sequences analysis

Introduction

In this document, I will show that the use of connections sequences could be useful to regroup
connections and reduce eliminate non-interesting ones.

First : What is a connection sequence ?
A connection sequence is the simplified representation of the packets exchanged between two
hosts during a communications. A sequence string is used to represent the connection
sequences. In a classical TCP communication, a sequence string is composed of :

foreach packets of the connection :
+ packet flags
- urg
+ ack
- psh
« 1St
+ sSyn
« fin
- full packet size in bytes
+ direction (O => coming from outside; I => coming from inside)

A typical connection string on port 445 look like this :

00001062001001062101000060001100019100110001431011000230001100045510110003600011
000931011000970011000931010001600010001601000100600000100600

Thus, by representing every connections in a dump file in this format, we can easily regroup
identicals sequences.

The ACK packets problem

In most of TCP communications, packets are usually following a specific order. But ACK
packets are differents. The Acknowledgment rythms depend on the network stack, the size of
the window (which depend of the operating system), and so on... thus, ACK packets are rarely
received in the same order and that's a problem for this experiment because ACK packets
change the sequence string. Handshake and connection closing are also useless because
always identical.

That's why the connections strings used in the experiments below are limited to PUSH
packets. We don't care about the handshakes, acknowledgements and closings.

Source datas

The source datas used are ArgusNet dump from the IIS server. The period begin in 02192007
until 03272007. {see the repository}

Julien Vehent - Attack redirection in Honeypots p-39/68

http://128.8.37.100/trac/browser/proxy/sequence_analysis
http://128.8.37.100/trac/wiki/ArgusNet

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Process pcap files

I use a little C program to process pcap files. The code is very simple. It produce a file where
each line is a packet summary, like that :

201.11.66.2:4704:192.168.2.45:139:0:1:0:0:0:0:60:T
201.11.66.2:4704:192.168.2.45:139:0:1:0:1:0:0:60:T
213.22.112.42:2465:192.168.2.45:139:0:0:0:0:1:0:78:0

The external IP adress is always the first argument of the line, followed by the external port,
the local IP adress, the local port, the TCP flags, the packet size and the direction (coming
from inside or outside). The piece of code which do this is :

/*! SEARCH PATTERN ON SRC ADDR TO FIND THE DIRECTION */
char *r = strstr(inet_ntoa (ip_h->ip_src), "192.168");

/*! if pattern found, packet is coming from the inside */
if (r != NULL)
{
fprintf (out, "%s:%u:",inet_ntoa(ip_h->ip_dst), ntohs(tcp_h->dest));
fprintf (out, "%s:%u:%u:%u:%u:su:%u:su:%d:I\n", inet_ntoa (ip_h->ip_src),
ntohs (tcp_h->source), tcp_h->urg, tcp_h->ack, tcp_h->psh, tcp_h->rst, tcp_h->syn,
tcp_h->fin, header->len);
}
else /*! pattern not found, packet is coming from the outside */
{
fprintf (out, "%s:%u:",inet_ntoa(ip_h->ip_src), ntohs(tcp_h->source));
fprintf (out, "%$s:%u:%u:%u:%u:%u:%u:%u:%d:0\n", inet_ntoa(ip_h->ip_dst),
ntohs (tcp_h->dest), tcp_h->urg, tcp_h->ack, tcp_h->psh, tcp_h->rst, tcp_h->syn,
tcp_h->fin, header->len);

}

Then, I use a Perl program to process this file and regroup packets in connections.

Regroup connections sequences in %global hash table
open FILE, "parsed.txt" or die print "unable to open file parsed.txt\n$!\n";
while (<FILE>){

process lines using ":" separator
example line : 87.91.58.222:49585:192.168.2.45:139:0:0:0:0:1:0:66:0
chomp ($_);

my @line Z split(/:/, $);

create ID (IP:PORT:IP:PORT) and Sequence string

my $id = $line[0].":".$line[1].":".$1line[2].":".$1line[3];

my $string =
$line[4].%$line[5].%$1line[6].$line[7].$1line[8].%$1line[9].$1line[10].$1line[11];

add $string at the end of the string sequence
$global{$id} .= $string;
}

The Perl program is build to do far more than that, it will call the pcap parser itself and
process the data to produce a result file. Launch it without arguments to print the help
information.

Julien Vehent - Attack redirection in Honeypots p.40/68

Master Management de la Sécurité des Systemes Industriels et des Systémes d'Information - Avril/Septembre 2007

Count identical sequences

The goal of this experiment is to count identical sequences (limited to PUSH packets) that are
directed to local port 445, which's Microsoft CIFS default port.
The tables below shows the results of this experiment.

packets 15722
connections 1850
avg pkt/con|8.5
nb of
identical [scheme %
sequences
257 0110001910011000143101100023000110004551011000360001100093101 13.89%
1000970011000931 seoe
554 0110001910011000143101100023000110004551011000368001100093101 12 112
1000970011000931 et
219 0110001910011000143101100023000110004551011000384001100093101 11.84%
1000970011000931 toEe
135 0110001910011000143101100023000110004551011000376001100093101 7,305
1000970011000931 TUYe
113 01100019100110001431011000290001100045510110004240011000931I 6.11%
108 0110001910011000143101100023000110004551011000396001100093101 5 845
1000970011000931 coEe
102 01100019100110001431011000290001100045510110004280011000931T 5.51%
66 01100019100110001431011000222001100045510110002760011000931I 3.57%
61 0110001910011000143101100023000110004551011000400001100093101 3.30%
1000970011000931 M
60 0110001910011000143101100023000110004551011000412001100093101 3 245
1000970011000931 Tene
56 01100019100110001431011000290001100045510110004400011000931T 3.03%
53 0110001910011000143101100023000110004551011000366001100093101 > 865
1000970011000931 toRe
39 01100019100110001431011000290001100045510110004440011000931T 2.11%
30 01100019100110001431011000260001100045510110004060011000931I 1.62%
30 0110001910011000143101100023000110004551011000382001100093101 1.622
1000970011000931 cuer
29 01100019100110001431011000290001100045510110004340011000931T 1.57%
57 0110001910011000143101100023000110004551011000380001100093101 1.462
1000970011000931 cEe
24 01100019100110001431011000290001100045510110004500011000931T 1.30%
20 01100019100110001431 1.08%
15 01100020300110001551011000234001100046710110002880011000105I |0.81%
14 to 2 |——————————————————— 3.89%
nb of unique sequences (seen just once) ‘110 ‘5.95%

Those results are interesting because they shows that 94.05% of the connections are seen
more than 1 time. So this means that we could probably reduce by 20 times the number of
connections handled by ArgusNet hosts. But this experiment doesn't care about False Positive,
so this could be a limitation.

Julien Vehent - Attack redirection in Honeypots p.41/68

http://128.8.37.100/trac/wiki/ArgusNet

Master Management de la Sécurité des Systemes Industriels et des Systémes d'Information - Avril/Septembre 2007

Relevancy of variation in packets size

As we can see in the previous table, many sequences are similars and differs just by a few
bytes in one or two packets. Thus, I have made another experiment to evaluate the relevancy
of a variation in packets sizes. I have took the first sequence string of the previous result :
01100019100110001431011000230001100045510110003600011000931011000970011000931

and I have redone the same experiment but with an increasing variation from 1% to 100% in
packets sizes.

This is the pseudo code :

For each sequence string {

if nb of packets and direction is equal to reference
then {

for each packet size in sequence string {

ref packet size is taken from the reference sequence string

if packet size is upper to (ref packet size + variation) or lower to
(ref packet size - variation)

then { mark sequence string as NOT EQUAL }

}

if sequence string is not NOT EQUAL { mark sequence as EQUAL }

}
}
Then, by doing this for each variation value between 1 and 18, we have the following results :

variance (%) nb of similars sequences
1 257
2 310
3 534
4 534
5 670
6 697
7 946
8 946
9 946
10 1054
11 1054
12 1116
13 1116
14 1116
15 1176
16 1176
17 1176
18 1176

Julien Vehent - Attack redirection in Honeypots p.-42/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Sequence matching evolution

(match a specific sequence)
1200 ———
1100 oo o
1000
900
800
700 g @ nb of similars
800 sequences
500 F—=
400
300 -8
200
100
O T T T T T T T T T T T T T T T T 1
123456 7 8 91011121314151617 18
variation of packet size acceptance

gquantity of connections matched

Since 18 to 100, the number of similar sequences matched is always 1176. The connection
matching is almost 5 times better with a variation of 15% of packets sizes...This could be an
interesting technique to increase the performances of a decision engine based on sequences
strings inspection, but again this could produce a lot of False Positive.....

Connections sequences validity period

I'm no longer working with the dump IIS.pcap file but with a set a 9 pcap files (one for each
month) covering all ArgusNet communication since September 2006 to the May, 9th 2006. In
this last experiment, I have took 4 sequences strings from 3 differents months.

* September 2006 :
0110000;011000I;0110000;011000I;0110000;011000I;0110000;011000I;:191;143;230;335;392;93;97;93;

* December 2006 : 0110000;011000I;:191;93;

* April 2007 :
0110000;011000I;0110000;011000I;0110000;011000I;0110000;011000I;:191;143;230;455;360;93;97;93;

* April 2007 :
0110000;011000I;0110000;011000I;0110000;011000I;0110000;011000I;:191;143;230;335;392;93;97;93;

And I have tried to find those sequences strings in differents dump files. Again, sequences are
limited to PUSH packet and again I'm only dealing with destination port 445. The analyser
also use a variation value of 20%, which is, based on the previous result, big enough to
include the most variation we can.

Julien Vehent - Attack redirection in Honeypots p.43/68

http://128.8.37.100/trac/wiki/ArgusNet

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

September 2006
dump nb of matched sequences nb of sequences on port 445

609 4479 7329
610 1019 2601
611 37 4307
612 0 6794
701 0 744
702 129 4771
703 0 10142
704 0 11528
705 0 1398

Matched sequences by specific pattern and variance of 20%
12000
11000 l
10000
9000
8000
7000

6000

E nb of matched
5000 sequences

W nb of sequences on
port 445

4000
3000
2000
1000

o
609 610 611 612 701 702 703 704 705

Month (y/mm)

nb of sequences

December 2006 : 0110000;011000I;:191;93;
dump nb of matched sequences nb of sequences on port 445

609 56 7329
610 922 2601
611 3732 4307
612 6104 6794
701 518 744

702 2639 4771
703 7662 10142
704 6698 11528
705 759 1398

Matched sequences by specific pattern and variance of 20%
20000

18000
16000
14000
12000
10000

Il nb of sequences on
port 445

[nb of matched

8000 SequUences

6000
4000

nb of sequences

2000

0
609 610 611 612 701 702 703 704 705

Month (y/mm)

Julien Vehent - Attack redirection in Honeypots

p- 44 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

April 2007

dump nb of matched sequences nb of sequences on port 445
609 0 7329
610 88 2601
611 0 4307
612 0 6794
701 0 744
702 299 4771
703 1242 10142
704 2194 11528
705 444 1398

Matched sequences by specific pattern and variance of 20%
14000
13000
12000
11000

g 10000

E 9000

[8000 ni sequences on

g 7000 u Dgrthqu

2 sooo [b of matched

q6 5000 sequences

o 4000

< 3000

2000
1000
0609 610 611 612 701 702 703 704 705
Month (y/mm)

April 2007

dump nb of matched sequences nb of sequences on port 445
609 0 7329
610 2 2601
611 2 4307
612 0 6794
701 0 744
702 213 4771
703 400 10142
704 1284 11528
705 5 1398

Matched sequences by specific pattern and variance of 20%
13000
12000
11000
10000

W

o 9000

%}

5 8000

3 nb of sequences on
=l 7000 | port 448

© 6000 [nb of matched

4 5000 seguences

=]

=

4000
3000
2000
1000

0
609 610 611 612 701 702 703 704 705

Month (y/mm)
Except for the sequences string of december, which is very short, all the sequences strings

have a limited life time. This means that a sequences strings recorded in september is useless
after october, and we can then limit the storage time to approximatively a months and a half.

Julien Vehent - Attack redirection in Honeypots p.45/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

C = ArgusProxy Network Engine

Hybrid honeypot requirements

The need of forwarding connections between honeypots implies to build a non-
conventional network engine. The needs are :
+ Low latency replay time;
« Transparency to the intruder;
+ UDP and TCP complacency (but I will not take interest on UDP in this document);

So, I tried for a while to think about it as a NAT problem. Considering that ArgusProxy
will act as a NAT router in a Linux environment, it could have been interesting to re-use some
of the Netfilter features to simplify the architecture. But our architecture implies to update
the redirection rules in the middle of the communication, and Netfilter doesn't commit the
NAT rules changes before the next communication (at least, for TCP), so it doesn't works...

So, I have decided to rely fully on raw sockets and using fully crafted connections using
my own packets. Rebuilding a complete network engine from root using raw packets could
have been a good idea, but the Linux kernel doesn't like when its not aware of the creation of
a connection. When I try to create a TCP handshake, my SYN packet is sent and receive by the
destination, that reply with a SYN/ACK packet but then the linux kernel send a RST packet to
the destination, because for it the connection doesn't exist. Again, it doesn't works...

Solution chose

The solution I'm actually working on use both raw sockets, Netfilter and regular kernel

networks methods. The idea is to create and maintain a TCP connection with the Argusnet
host for each redirected connection. Each connection will be represented by a socket stored in
the redirected connections binary tree.
When a packet is received from an attacker, its payload is send to the ArgusNet destination
using the active communication. When ArgusProxy receive the response from the Argusnet
host, it build a RAW packet (we need to keep some information about the original TCP
connection to do so) and send it to the attacker.

The following pictures shows these four steps :

Julien Vehent - Attack redirection in Honeypots p. 46 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Base situation :
tep flow #1 The intruder initiate a connection with the low

interaction honeypot.
bad guy
argusprox
- | low interaction
| honeypot
Replaying :
tep flow #1 Argusproxy create a new connection
with an ArgusNet host and replay the
payloads sent by the intruder
bad guy
argusprox
.. | low interaction
“" | honeypot
’ll tep flow #2
ArgusNet Host
Forwarding :
The 2 tcp connections are active.
tep flow #1 Each time a packet is received from the attacker,
argusproxy copy it and drop it. The low interaction
honeypot never see it.
bad guy
argusprox

| low interaction

¢ tep flow #2 \ ~" | honeypot
packet is droppe
-1 argusnet

ArgusNet Host

Reply :
ArgusNet reply to argusproxy about the packet
tep flow #1 it just received. Aware of the parameters of the

connection #1, Argusproxy create a fake packet
q and send this response to the attacker.

bad guy

argusprox

raw packet

low interaction
¢ tep flow #2 honeypot

v

ArgusNet Host

Julien Vehent - Attack redirection in Honeypots

p.47/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

This architecture should works quite efficiently but it oblige us to keep alive a number of TCP
connections. I don't know yet if it will be a problem. The Binary Tree will give a quick access
to the sockets if the kernel doesn't limit it or close it when it is called from another memory
space....

The B-Tree will look like that :

Redirected connections
balanced binary tree

ROOT

key struct | time val net sock

||
v v

key struct | time val net sock . key struct | time val net sock o
key struct | time val net sock . key struct | time val net sock o

“struct” is the data part of an entry, it will contain a time value (to delete out of date entries)
and the network socket. If we need to add more information in this structure, it will still
possible to do it after.

Time table

I thought the network engine will takes me less times than that, but with the better vision I
have now, I think I will need 3 weeks to do it completely if everything goes well.

This means that a beta version of ArgusProxy could not be installed before the beginning of
september, because I also need to code a basic decision engine.

Julien Vehent - Attack redirection in Honeypots p. 48/68

Master Management de la Sécurité des Systemes Industriels et des Systemes d'Information - Avril/Septembre 2007

D = ArgusProxy source code

daemonize

has_been_replayed listen_tcp reply_tcp store_packet

B cie |
_| usrl_signal_handler }—>| close_peap_context | §

init_variables

| main

acknowledge_tcp }—DI in_cksum |

process_pkt
get_current_struct

create_pcap_filename |

init_pcap_context

remove old value
match_old_value

Julien Vehent - Attack redirection in Honeypots p.49/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Process pkt

/*! process_pkt
*

\brief Function called for each received packet, this is the core of the redirection engine

\param[in]
\return sta

*/

tb a Netfilter Queue structure that contain both the packet and the metadatas
tement = 0 if the packet should be accept or 1 if the packet has to be dropped

static u_int32_t process_pkt (struct nfg data *tb)

{

Julien Vehent - Attack redirection in Honeypots

int statement = 1;
char *nf_packet;

/*! extra
*

/

ct ip header from packet payload

nfg _get_payload(tb, &nf_packet);

struct iphdr *iph = ((struct iphdr *) nf_packet);

/*! compu
*

te the two tuples key_one and key_two

* 1f packet is not TCP nor UDP, return dontcare = 1
*
iné dontcare = create_tuple (nf_packet);
if (dontcare == 0)
{ /*! Is the packet a part of a redirected connection ??? */
if (is_redirected() == 0)
{ /*! in a redirected connection, do not process packets

*
*
*
*/

if

{

from the low-interaction honeypot network
just drop them

(NULL == strstr(inet_ntoa (iph->saddr), (char *) g_hash_table_lookup(config,"net_prefix"))

/*! store actual packet

*/

if (0 != store_packet (nf_packet, NULL, NULL))

{
syslog (LOG_ERR | LOG_USER, "%s","MAIN : Unable to store the packet in memory");
g_print ("Unable to store the packet in memory \n");
return -1;

/*! if packet need to be acknowledged, do it

*/
if(iph->protocol == 6)
{
struct tcphdr *tcph = (struct tcphdr *) (nf_packet + iph->ihl*4);
if (tcph->ack == 1 && tcph->psh == 1)

acknowledge_tcp (nf_packet);
}

/*! The connection is redirected but
* 1f it has not been replayed already,
* replay it now

*/
if (has_been_replayed() != 0)
{
/*! replay the connection
*/
if ((replay(iph->protocol)) != 0)
{
syslog (LOG_WARNING | LOG_USER, "%s","Error while replaying connection");
}
}
else {

/*! otherwise forward it to its honeypot destination
* get the reply from the forwarded destination

)

p.50/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

* and send it to the source in a raw packet

*/
if (0
{

=

syslog (LOG_WARNING |
}
}

/*! if record mode is activated
*/
if (NULL

{

/*! record packet in pcap format in mode

if
{

(0 !'= record_pkt (tb, NULL,

syslog (LOG_ERR | LOG_USER,

forward (iph->protocol,

LOG_USER,

nf_packet)))

"$s","Forwarding failed");

*/

'redirected’

1))

"$s", "MAIN

Pcap recording failed

!= strstr(g_hash_table_lookup(config, "record_redirected"),"1")

g_print ("Unable to record the redirected packet in PCAP format\n");

return -1;

}

)

1y ;

redirect_to_dest);

/*! switch statement to 0 to drop the packet
*/
statement = 0;
}
/*! Is the packet part of an activ connection ? (0 = yes)*/
else
{ if (is_activ(nf_packet) == 0)
{
/*! forward packet to dest
if (0 != (forward(m,redirect_to_dest)))
{
syslog (LOG_WARNING | LOG_USER, "$%s%s","Forwarding failed to destination ",
*/
}
/*! if record mode is activated
*/
if (NULL != strstr(g_hash_table_lookup(config, "record"),"1"))
{
/*! record packet in pcap format */
if (0 != record_pkt (tb,NULL, 0))
{
syslog (LOG_ERR | LOG_USER, "%s","MAIN Pcap recording failed !!!");
g_print ("Unable to record the packet in PCAP format !!!\n");
return -1;
}
}
/*! store packet in memory to replay the connection later
*/
if (0 != store_packet (nf_packet, NULL, NULL))
{
syslog (LOG_ERR | LOG_USER, "%s","MAIN Unable to store the packet in memory");

g_print ("Unable to store the packet in memory \n");

return -1;

}

/*! free keys memory */
g_string_free (key_one, FALSE);
g_string_free (key_two, FALSE);

return statement;

Julien Vehent - Attack redirection in Honeypots

p.51/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

//! Is_activ function,
table
J*1

Is activ

Search if the packet is part of an active connection in the netfilter conntrack

\param[in] nf_packet is the raw packet

\return 0 if found,

*/

anything else if not

int is_activ(char *nf_packet)

{

struct
struct
struct
struct

nf_conntrack

tcphdr *tcp;
udphdr *udp;

!

int conn_state

defaut value 1is
_1,-

*ct;

nfct_handle *cth;

-1 => state not active */

/*! extract ip header from packet payload */

struct iphdr *iph

g_print (

/*! nfct_conntrack_
*

* In case of success,

"NETFILTER_CONNTRACK

((struct iphdr *) nf_packet);
Connection check called for %s",key_one->str);

new — allocate a new conntrack

this function returns a valid pointer to a memory blob,

* otherwise NULL is returned and errno 1is set appropiately.

*/

ct = nfct_new();

/*! nfct_set_attr_u[8,16,32] - set the value of a certain conntrack attribute
*

\param[in] ct: pointer to a valid conntrack
\param[in] type: attribute type
\param[in] value: unsigned [8,16,32] bits attribute value

*/
nfct_set_attr_u8(ct,

nfct_set_attr_u32(ct
nfct_set_attr_u32(ct, ATTR_ORIG_IPV4_DST,

nfct_set_attr_u8(ct,

int dontcare = 0;

ATTR_ORIG_L3PROTO, AF_INET);
, ATTR_ORIG_IPV4_SRC, iph->saddr);
iph->daddr) ;

ATTR_ORIG_L4PROTO, iph->protocol);

switch (iph->protocol)

{
case 6
tcp

(struct

nfct_set_attr_ul6(ct,
nfct_set_attr_ul6(ct,

break;

case 17
udp

(struct

nfct_set_attr_ul6(ct,
nfct_set_attr_ulé6(ct,

break;

default

tcphdr *) (nf_packet+ iph->ihl*4);

ATTR_ORIG_PORT_SRC,
ATTR_ORIG_PORT_DST,

tcp->source) ;
tcp->dest) ;

udphdr *) (nf_packet + iph->ihl*4);
ATTR_ORIG_PORT_SRC,

ATTR_ORIG_PORT_DST,

udp->source) ;
udp->dest) ;

/*! don't care about this packet */

dontcare = 1;

}

/*! continue with packet only if protocol is UDP or TCP */

if (dontcare == 0)
{ /*! nfct_open - create a conntrack handler
*
cté = nfct_open (CONNTRACK, O0);
if (!cth)
syslog (LOG_WARNING | LOG_USER, "%s","Can't open Conntrack handler");

/*! nf_callback_register — register a callback

*

Julien Vehent - Attack redirection in Honeypots

p.52/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

\param[in] cth: library handler

\param[in] NFCT_T_ALL : message type

\param[in] cb: callback used to process conntrack received
\param[in] NULL : data used by the callback, if any.

*

* This function register a callback to handle the conntrack received,

* in case of error -1 is returned and errno 1is set appropiately, otherwise
* 0 is returned.
*
*
*

Note that the data parameter is optional, if you do not want to pass any
data to your callback, then use NULL.
*/
if (0 != nfct_callback_register(cth, NFCT_T_ALL, cb, NULL))
syslog (LOG_WARNING | LOG_USER, "%s","Failure in callback function");

/*! nfct_query — send a query to ctnetlin
\param[in] h: library handler
\param[in] NFCT_Q GET: query type
\param[in] ct: data required to send the query
*
* For query types:
* NFCT_Q CREATE: add a new conntrack, 1if it exists, fail
* NFCT_O_CREATE _UPDATE: add a new conntrack, if it exists, update it
* NFCT_Q UPDATE: update a conntrack
. NFCT_Q DESTROY: destroy a conntrack
* NFCT_Q GET: get a conntrack
*
*
*

On error, -1 is returned and errno is explicitely set. On success, 0
is returned.
*/
errno = 0;
conn_state = nfct_query(cth, NFCT_Q_GET, ct);

/*! close the handler */
nfct_close(cth);

if (conn_state == 0)

g_print (" ==> ESTABLISHED\n");
else

g_print (" ==> NEW\n");

/*! return state value */
return conn_state;

Julien Vehent - Attack redirection in Honeypots p. 53/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Store packet

/*! store packet function

\brief Store the current packet as part of the connection to replay it later. If this is the first
packet of a communication, init its structure in the main B-Tree.

*

\param[in] m is the IP raw packet

\param[in] mode, set to one if the another context than the current one must be used
*

\return 0 in case of success, anything else otherwise

*/
int store_packet (char *nf_packet, int mode, char alt_key[43])

{

/*! copy the packet
*/

struct iphdr *printip = (struct iphdr *) nf_packet;

gpointer *store = malloc (ntohs (printip->tot_1len));

/*! the b-tree will index the position of the "store" value in memory
*
* so don't free it !!!

*/
memcpy (store, nf_packet, ntohs (printip->tot_len));

/*!
* search the entry
*/
if (
TRUE != g_tree_lookup_extended(conn_tree, key_one->str, NULL, NULL)
&&
TRUE != g_tree_lookup_extended(conn_tree, key_two->str, NULL, NULL)

)

/*! if doesn't exist, create it and init the whole structure
* as a value for this entry

*/
struct conn_struct *add_new_data;
add_new_data = malloc(sizeof (*add_new_data));

/*! get current time
*/
gint *curtime;
struct tms current;
curtime = g_strdup_printf ("%d", times (¤t));

/*! fill the structure

*/
add_new_data->access_time = curtime;
add_new_data->redirected = 0;
add_new_data->hasbeenreplayed = 0;
add_new_data->socket = 0;
add_new_data->rawsocket = 0;
add_new_data->recordlist = NULL;

/*! store the address of the payload as a new entry of the list
*/

add_new_data->recordlist = g_slist_append(add_new_data->recordlist, store);

/*! add the list to the tree, value contain the address of the first entry of the list
*/

g_tree_insert (conn_tree, key_one->str, add_new_data);

g_print ("STORING FUNCTION : entry created for %s\n",key_one->str);

}
else {
/*! the tuple already exist in the B-Tree
*

* add the packet at the end list and update the time value

*/

/*! if we don't use the current context
*/

if(mode == 1)

Julien Vehent - Attack redirection in Honeypots p. 54 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

/*! find the good entry in the b-tree
*/

struct conn_struct * connection_data;

if (TRUE != g_tree_lookup_extended(conn_tree, alt_key, NULL, (gpointer *) &connection_data))
g_print ("TABLE : Wrong B-Tree key in alternativ context\nkey = %s\n",alt_key);

/*! store the packet
*/
connection_data->recordlist = g_slist_append(connection_data->recordlist, store);

g_print ("STORING FUNCTION : %dst packet of %s stored in
memory\n",g_slist_length (connection_data->recordlist), alt_key);

}

else
/*! use current context
*/
if(0 == get_current_struct ())

{

current_connection_data->recordlist = g_slist_append (current_connection_data->recordlist,
store);

g_print ("STORING FUNCTION : %dst packet of %s stored in
memory\n",g_slist_length (current_connection_data->recordlist), key->str);

/*! for test purpose only !!!
*

* when the fourth packet of a connection is reached, ask for a redirection
* next time a packet is seen

*/

if (g_slist_length(current_connection_data->recordlist) == 17)
current_connection_data->redirected = 1;

}

return 0;

Julien Vehent - Attack redirection in Honeypots p. 55/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

B-Tree cleaning functions

/*! match_old _value function : called for each entry in the B-Tree, if a time value is upper to 5
minutes, entry is deleted

\param[in] key, a pointer to the current B-Tree key value

\param[in] value, a pointer to the current B-Tree associated value

\param[in] trash, user data, unused

\return FALSE, to continu to traverse the tree (if TRUE is returned, traversal is stopped)

*/
int match_old_value (gpointer key, struct conn_struct *cur_conn, gpointer trash)

{

struct tms actual;

gint *valtime;

valtime = g_strdup_printf ("%d",times (&actual));
if((valtime - cur_conn->access_time) > 30000)

{
g_ptr_array_add(entrytoclean, key);
}
return FALSE;
}

/*! remove_old value function : called for each entry in the pointer array, each entry is a key that is
deleted from the B-Tree
\param[in] key, a pointer to the current B-Tree key value stored in the pointer table
\param[in] trash, user data, unused
*/
void remove_old_value (gpointer key, gpointer trash)
{
g_print ("REDIRECT TABLE CLEANER : entry %s removed\n", (char *) key);
if (TRUE != g_tree_remove (conn_tree, key))
{
g_print ("REDIRECT TABLE CLEANER : error while removing %s /!\\ KEY NOT FOUND IN B-TREE /!\\
\n", (char *) key);
}
}

/*! watchman for the b_tree, wake up every 5 minutes and check every entries */
void clean()
{
while (1)
{
/*! wake up every 5 minutes */
sleep (300);

g_print ("Cleaning process started\n");
/*! First, clean the redirect table
***********************************/

entrytoclean = g_ptr_array_new();

/*! call the clean function for each value, delete the value if TRUE is returned*/
g_tree_traverse(conn_tree, (GHRFunc) match_old_value, G_IN_ORDER, NULL);

/*! remove each key listed from the btree */
g_ptr_array_foreach (entrytoclean, (GFunc) remove_old_value, NULL);

/*! free the array */
g_ptr_array_free(entrytoclean, TRUE);

/*! Second, clean what ?2??
***********************************/

Julien Vehent - Attack redirection in Honeypots p. 56 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

/*! record_pkt
*

Record pkt

\brief record a packet in the current pcap file descriptor

*

\param[in] nfqg data *tb, raw packet (used with nfqueue)
\param[in] *payload, packet to record (used outside of nfqueue)
1 for redirected connections, 2 for redirected outside

\param[in] mode, 0 for non redirec
nfqueue
*

}return 0 on success, anything els
iné record_pkt (struct nfg data *tb,
{ /*! if pcap desc doesn't exist,

*
?f/(!pcap_main_desc)

if (0 != init_pcap_context ())
{
syslog (LOG_ERR | LOG_USER,
g_print ("exit with error c
return -1;

}

pcap_dumper_t *DumpDescriptor;

ted connection,

e otherwise
char *p, int mo

init pcap contex

"es", "PCAP_TOOL
ode -1\n");

de)

t

Error while initializing pcap");

/*! switch the descriptor regarding to the mode (redirected or not)

*/
if (mode == 0)

DumpDescriptor = pcap_output_current;

else

DumpDescriptor = pcap_output_redirected;

/*! if the actual pcap output file is bigger than 10mo, create a new one

*/
if (ftell ((FILE *)DumpDescriptor

) > 10485760) {

/*! close the current descriptor */

pcap_dump_close (DumpDescripto

r);

/*! create output filename based on the conf and the time value */

GString *file_name;
file_name = create_pcap_filen

ame (mode) ;

/*! open the new file descriptor

*/
if (NULL == (DumpDescriptor =
{
syslog (LOG_ERR | LOG_USER,

pcap_dump_open (

"gs", "PCAP_TOOL

g_print ("exit with error code -1\n");

return -1;

}
g_print ("PCAP_TOOL

pcap_main_desc, file_name->str)))

Error while creating pcap output file");

file descriptor opened at %s\n", file_name->str);

/*! store new descriptor in global descriptor
*

/
if (mode == 0)

pcap_output_current = DumpDescriptor;

else

pcap_output_redirected = DumpDescriptor;

}

/*! create pcap specific header
*/
struct pcap_pkthdr phdr;

GTimeVal t;
g_get_current_time (&t);

phdr.ts.tv_sec = t.tv_sec;
phdr.ts.tv_usec = t.tv_usec;

Julien Vehent - Attack redirection in Honeypots

p.57/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

if(mode == 2)
{
/*! mode 2 is used when we need to record a packet received outside of
* the netfilter queue

*/
struct iphdr *ip = (struct iphdr *) p;
phdr.caplen = ntohs (ip->tot_len); /*! +1 because the '\0' is not included */
phdr.len = phdr.caplen;

/*! pcap_dump, write pcap header and packet data to the output file
\param[in] pcap_output_current, descriptor to the current output file
\param[in] &phdr, pcap header
\param[in] payload, packet data
*
/
pcap_dump (DumpDescriptor, &phdr, (const u_char *)p);
}
else
{
char *nf_packet;
phdr.caplen = nfqg_get_payload(tb, &nf_packet);
phdr.len = phdr.caplen;

/*! pcap_dump, write pcap header and packet data to the output file

\param[in] pcap_output_current, descriptor to the current output file

\param[in] &phdr, pcap header

\param[in] (const u_char *)nf_packet, packet data from netfilter queue
*

pcap_dump (DumpDescriptor, &phdr, (const u_char *)nf_packet);
}

g_print ("PCAP_TOOL : Current packet writed to output pcap file (mode = %d)\n", mode);

return 0;

Julien Vehent - Attack redirection in Honeypots p. 58 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

Netcode functions

/*! \file netcode.c
\brief Network functions file

\Author J. Vehent
*/

#include <glib.h>

#include <syslog.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <linux/netfilter.h>

#include <libnetfilter_queue/libnetfilter_gueue.h>

#include "netcode.h"
#include "tables.h"

/*! in_cksum

\brief compute the internet checksum (TCP & UDP)

*

\param[in] ptr, a layer 4 packet + payload

\param[in] nlébitswords, size of the data in 1lébits words
*

\return answer, a 16 bits checksum
*/
unsigned short in_cksum(unsigned short *ptr,int nlébitswords)
{
register long sum;
u_short oddbyte;
register u_short answer;

sum = 0;

while (nlébitswords > 0) {
sum += *ptr++;
nlébitswords——;

}

/*! padding
*/
if (nlé6bitswords > 0) {
oddbyte = 0;
*((u_char *) &oddbyte) = *(u_char *)ptr;
sum += oddbyte;

/*!

* complement to 1

*/
sum = (sum >> 16) + (sum & Oxffff);
answer = ~sum;

return (answer) ;

/*! forward_tcp function
*

\brief forward a packet to its destination in the high-interaction honeypot
*

When a connection is replayed to the high-interaction honeypot, the socket
used to replay the connection is recorded in the 'replayed connections' B-Tree

*
*
*
* This function search for the good socket, get it and use it to forward a received
* payload from an attacker to argusnet

*

*

If the packet to forward is a connection close request, the socket is closed
*

\return 0 if the connection has been successfully replayed, anything else if not
*/
int forward_tcp(char *nf_packet)
{
if(0 != get_current_struct())
return -1;

Julien Vehent - Attack redirection in Honeypots p.59/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

/*! separate the payload

*/
struct iphdr *ip = (struct iphdr *) nf_packet;
struct tcphdr *tcp = (struct tcphdr *) (nf_packet + (ip->ihl << 2));

if (tcp->psh == 1)
{

char *payload;
int PAYLOAD_SIZE = ntohs (ip->tot_len) - ((ip->ihl << 2) + (tcp->doff << 2));

payload = calloc((size_t)1, (size_t) (PAYLOAD_SIZE));
/*! set the related memory to 0

*
memset (payload, 0x0, PAYLOAD_SIZE);

/*! get the payload from the list
*/
memcpy (payload,
nf_packet + (ip->ihl << 2) + (tcp->doff << 2),
PAYLOAD_SIZE
)i

int bytes_sent = -1;

/*! send(), send a message on a socket
\param[in] s, a socket file descriptor
\param[in] payload, buffer that contain the packet
\param[in] PAYLOAD SIZE, size of the packet
\param[in] flags, set to 0

*

\return the number of bytes sent on succes, a negative value on error

*/
bytes_sent = send(current_connection_data->socket,
payload,
PAYLOAD_SIZE,

0
)i

if (bytes_sent < 0)

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Forwarding packet failed");
g_print ("NETCODE: Unable to forward packet to destination\n");
return -1;

}
else
g_print ("NETCODE : packet forwarded to destination (%d bytes sent)\n", bytes_sent);

}

else

{

/*! if the packet to forward is a close request (FIN flag), close the socket
*

*/
if (tcp->fin == 1)
close (current_connection_data->socket);

/*! ADD A CONNECTION CLOSING WITH THE SOURCE HERE

*/
}

return 0;

/*! listen_tcp

*

\brief get the data from a tcp connection with a high-interaction honeypot
*

\param[in] curkey, the key of the binary tree that refer to the connection between the attacker and the
low-interaction honeypot

*/
void listen_tcp (char curkey[43])

{
int bytes_recv = -1;

Vag
\def socket

Julien Vehent - Attack redirection in Honeypots p.60/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

*
* copy the socket to a static value because current_connection_data will be switcher to another value
*

\brief store the socket related to this thread
*

\param socket, the socket
*

*/

int socket = current_connection_data->socket;

/*!
\def packet
*

\brief Buffer to store the datas of a packet received from a listening thread
*

\param replied_data[BUFSIZE], datas
*

*/
char replied_data[BUFSIZE];

/*! loop the incoming packets
*/
while ((bytes_recv = recv(socket,
replied_data,
BUFSIZE,
0)) '=-1)
{
g_print ("NETCODE : reply received from the destination (%d bytes)\n", bytes_recv);

if (bytes_recv > 0)
/*! send the answer to the source in a raw packet
*/
reply_tcp(replied_data, bytes_recv, curkey);

bytes_recv = -1;
}

/*! reply tcp

\brief Forward a TCP PSH packet received from argusnet to its destination using a raw tcp packet

*

\param[in] replied _data, the data received

\param[in] PKTSIZE, the number of bytes received

\param[in] curkey, a pointer to the B-Tree key that refer to the connection between the intruder and the
low—interaction honeypot

*

*/
void reply_tcp(char replied_data[BUFSIZE], int PKTSIZE, char curkey[43])
{
g_print ("NETCODE : Send reply in connection %s (size = %d)\n",curkey,PKTSIZE);
/*! search in the records the last IP packet sent from the inside
* to get the ip information
*/

struct conn_struct * connection_data;

if (TRUE != g_tree_lookup_extended (conn_tree, curkey, NULL, (gpointer *) &connection_data))
g_print ("NETCODE : Wrong B-Tree key... unable to reply the packet\nkey = %s\n",curkey);
int i = g_slist_length(connection_data->recordlist);
struct iphdr *last_sent_ip = (struct iphdr *) g_slist_nth_data(connection_data->recordlist, --1i);
while (NULL == strstr(inet_ntoa(last_sent_ip->saddr), (char *)
g_hash_table_lookup (config, "net_prefix")))
last_sent_ip = (struct iphdr *) g_slist_nth_data(connection_data->recordlist, --1);

/*! get the tcp header
*/
struct tcphdr *last_sent_tcp = (struct tcphdr *) (g_slist_nth_data(connection_data->recordlist, i) +
(last_sent_ip->ihl << 2));

/*! create the new ip header
*/

struct packet p;

memset (&p, 0x0, sizeof (struct packet));

p.ip.version = 4;
p.ip.ihl = IPHSIZE >> 2;

Julien Vehent - Attack redirection in Honeypots p.-61/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

p.ip.tos = 0;

p.ip.tot_len = htons (PKTSIZE + IPHSIZE + TCPHSIZE);
p.ip.id = htons (ntohs (last_sent_ip->id) + 1);
p.ip.frag_off = 0;

p.ip.ttl = last_sent_ip->ttl;

p.ip.protocol = IPPROTO_TCP;

p.ip.saddr = last_sent_ip->saddr;

p.ip.daddr = last_sent_ip->daddr;

p.ip.check = 0; /*!filled by the ip stack of the kernel */

/*! create the tcp header (push packet)
* size is always 20 bytes

*

/

.tcp.source = last_sent_tcp->source;
.tcp.dest = last_sent_tcp->dest;
.tcp.ack_seq = htonl (0);

.tcp.doff = TCPHSIZE >> 2;

.tcp.urg =0
.tcp.ack =0
.tcp.psh =1
.tep.rst =0
.tcp.syn =0
.tcp.fin =0
.tcp.window
.tcp.check =
.tcp.urg_ptr

last_sent_tcp->window;
; /*! set to 0 for later computing */
0;

'0's'0's "0 'C 'O '8 'O 'O ' T T

o

/*! the seq number is the ack_seq number of the last tcp packet received from the attacker
*

* so we need to get the last recv packet

*/
int j = g_slist_length(connection_data->recordlist);
struct iphdr *last_recv_ip = (struct iphdr *) g_slist_nth_data(connection_data->recordlist, --3);

/*! this time, we search for a packet that doesn't match the strstr condition */

while (NULL != strstr(inet_ntoa(last_recv_ip->saddr), (char *)
g_hash_table_lookup (config, "net_prefix")))
last_recv_ip = (struct iphdr *) g_slist_nth_data(connection_data->recordlist, --3j);

/*! get the tcp header
*/

struct tcphdr *last_recv_tcp = (struct tcphdr *) (g_slist_nth_data(connection_data->recordlist, j) +

(last_recv_ip->ihl << 2));

/*! Thus, the actual seq number is the former ack_seq number
*/
p.tcp.seq = last_recv_tcp—>ack_seq ;

/*! add the payload to the raw packet
*/
memcpy (p.payload, replied_data, PKTSIZE);

/*! pseudo tcp header for the checksum computation
*

/

struct pseudo_tcp p_tcp;
memset (&p_tcp, 0x0, PSEUDOTCPHSIZE) ;

p_tcp.saddr = p.ip.saddr;

p_tcp.daddr = p.ip.daddr;

p_tcp.mbz = 0;

p_tcp.ptcl = IPPROTO_TCP;

p_tcp.tcpl = htons (TCPHSIZE + PKTSIZE);

memcpy (&p_tcp.tcp, &p.tcp, TCPHSIZE);

/*! add the payload to the pseudo header
*/
memcpy (p_tcp.payload, replied_data, PKTSIZE);

/*! in_cksum
\brief compute the tcp checksum
*

\param[in] ((TCPHSIZE + PKTSIZE + PSEUDOTCPHSIZE) /2) + ((TCPHSIZE + PKTSIZE + PSEUDOTCPHSIZE)

size of the data to compute
*

Julien Vehent - Attack redirection in Honeypots

$2) the

p. 62/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

\return check, a 16 bits checksum
*/
p.tcp.check = in_cksum((unsigned short *)&p_tcp, ((TCPHSIZE + PKTSIZE + PSEUDOTCPHSIZE) >> 1) +
((TCPHSIZE + PKTSIZE + PSEUDOTCPHSIZE) % 2));

/*! reuse the raw socket created to ack the first packet after the redirection
* to send this raw packet to its destination

*/
int bytes_sent = sendto(connection_data->rawsocket,
&p!
IPHSIZE + TCPHSIZE + PKTSIZE,
0

4
(struct sockaddr *) &connection_data->rawsin,
sizeof (connection_data->rawsin)

)i

if (bytes_sent < 0)

g_print ("NETCODE : error while replying packet\n—--—————————— \n");
g_print ("ERNNO == %d\n", errno);

}

else

{
g_print ("NETCODE : packet replied to its destination, size = %d bytes\n",bytes_sent);

}

/*! store the ack packet in memory
*/

char pkt[IPHSIZE + TCPHSIZE + PKTSIZE];

memcpy (pkt, (char *) &p, IPHSIZE + TCPHSIZE + PKTSIZE);

if (0 !'= store_packet (pkt, 1, curkey))

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Unable to store the sent packet");
g_print ("Error while trying to store the raw ack packet sent in to the attacker\n");

}

/*! record packet in pcap format in mode 'redirected w/o nfqueue' */

if (0 != record_pkt (NULL, pkt, 2))

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Pcap recording failed !!!");
g_print ("Unable to record the replied packet in PCAP format\n");

}

g_print ("-—————————- \n");

/*! acknowledge_tcp
*

\brief Sent a raw built acknowledgment to the attacker
*

\param[in] nf_packet, the entire packet received by the netfilter queue
*

*/
void acknowledge_tcp (char *nf_packet)
{
struct iphdr *recv_ip = (struct iphdr *) nf_packet;
struct tcphdr *recv_tcp = (struct tcphdr *) (nf_packet + (recv_ip->ihl << 2));

/*! search in the records the last IP packet sent from the inside
* to get the ip information
*/
if(0 != get_current_struct())
g_print ("NETCODE : Unable to get current struct\n");

g_print ("NETCODE : Acknowledge packet for connection %s\n", key->str);

int i = g_slist_length(current_connection_data->recordlist) -1 ;
struct iphdr *last_sent_ip = (struct iphdr *) g_slist_nth_data(current_connection_data->recordlist,
i);
while (NULL == strstr((char *)inet_ntoa(last_sent_ip->saddr), (char *)
g_hash_table_lookup (config, "net_prefix")))
last_sent_ip = (struct iphdr *) g_slist_nth_data(current_connection_data->recordlist, --i);

Julien Vehent - Attack redirection in Honeypots p. 63/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

struct tcphdr *last_sent_tcp = (struct tcphdr *) (g_slist_nth_data(current_connection_data-
>recordlist, i) + (last_sent_ip->ihl << 2));

/*! create the ip header
*

struct packet p;
memset (&p, 0x0, sizeof (struct packet));

p.ip.version = 4;

p.ip.ihl = (IPHSIZE >> 2);

p.ip.tos = 0;

p.ip.tot_len = htons (IPHSIZE + TCPHSIZE);
p.ip.id = htons (ntohs (last_sent_ip->id) + 1);
p.ip.frag_off = 0;

p.ip.ttl = last_sent_ip->ttl;

p.ip.protocol = IPPROTO_TCP;

p.ip.saddr = last_sent_ip->saddr;

p.ip.daddr = recv_ip->saddr;

p.ip.check = 0; /*!filled by the ip stack of the kernel */

/*! create the tcp header (ack packet)
* size is always 20 bytes

*/
p.tcp.source = recv_tcp->dest;
p.tcp.dest = recv_tcp—->source;
p.tcp.seq = recv_tcp—>ack_seq;

/*! take the received seq number, add the size of the datas received and use it as ack_seq
*/
p.tcp.ack_seq = htonl ((unsigned long)ntohl (recv_tcp->seq) + (unsigned long) (ntohs (recv_ip->tot_len)
- ((recv_ip->ihl << 2) + (recv_tcp->doff << 2))));

/*! this is a very basic tcp header, just 20 bytes for the ack packet
*

/
.tcp.doff
.tcp.urg
.tcp.ack
.tcp.psh
.tcp.rst
.tcp.syn
.tcp.fin
.tcp.window
.tcp.check
.tcp.urg_ptr

TCPHSIZE >> 2;

Il
coooor ol

last_sent_tcp->window;

’

'0'0 'O "0 "0 'C 'O ‘T T 'O

I
o
o

/*! pseudo tcp header for the checksum computation
*/

struct pseudo_tcp p_tcp;

memset (&p_tcp, 0x0, sizeof (struct pseudo_tcp));

p_tcp.saddr = last_sent_ip->saddr;
p_tcp.daddr = recv_ip->saddr;
p_tcp.mbz = 0;

p_tcp.ptcl = IPPROTO_TCP;
p_tcp.tcpl = htons (TCPHSIZE) ;

memcpy (&p_tcp.tcp, &p.tcp, TCPHSIZE);
/*! compute the tcp checksum
*

* TCPHSIZE is the size of the tcp header
* PSEUDOTCPHSIZE is the size of the pseudo tcp header
* we divide by 2 because the checksum is computed on 16 bits words and not 8 bits
*/
p.tcp.check = in_cksum((unsigned short *)&p_tcp, ((TCPHSIZE + PSEUDOTCPHSIZE) >> 1) + ((TCPHSIZE +
PSEUDOTCPHSIZE) % 2));

/*! create the raw socket if not exist
*/
if (current_connection_data->rawsocket == 0)
{
g_print ("NETCODE : create the raw socket\n");

current_connection_data->rawsocket = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);

int on=1;
if (setsockopt (current_connection_data->rawsocket, IPPROTO_IP,IP_HDRINCL, (char *)&on,sizeof (on)) <

Julien Vehent - Attack redirection in Honeypots p. 64 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

0)
g_print ("NETCODE : Unable to free the raw tcp socket (setsockopt error)\n");
current_connection_data->rawsin.sin_family = AF_INET;
current_connection_data->rawsin.sin_port = p.tcp.dest;

current_connection_data->rawsin.sin_addr.s_addr = p.ip.daddr;

}

/*! send the packet

*/
int bytes_sent = sendto(current_connection_data->rawsocket,

&pl
ntohs (p.ip.tot_len),
’

(struct sockaddr *) ¤t_connection_data->rawsin,

sizeof (current_connection_data->rawsin)
)i

if (bytes_sent < 0)
g_print ("NETCODE : error while acknowledging packet\n");
else
g_print ("NETCODE : acknowledgment sent, size = %d bytes\n",bytes_sent);

/*! store the ack packet in memory
*/

char ackpkt[ntohs (p.ip.tot_len)];

memcpy (ackpkt, (char *) &p, ntohs(p.ip.tot_len));

if (0 != store_packet (ackpkt, NULL, NULL))

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Unable to store the acknowledgment sent");
g_print ("Error while trying to store the raw ack packet sent in to the attacker\n");

}

/*! record packet in pcap format in mode 'redirected w/o nfqueue' */

if (0 != record_pkt (NULL, ackpkt, 2))

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Pcap recording failed !!!");
g_print ("Unable to record the acknowledgment packet in PCAP format\n");

int forward_udp (char *nf_packet)

{
g_print ("UDP forwarding is not available yet...\n");
return 0;

/*! replay_tcp function
*

\brief replay a recorded tcp connection to an identified host

*

* When the engine wants to replay a tcp connection, this function is called.

* It search the recorded packets list in the B-Tree, then it search for a destination
* in the argusnet correspondance list

* A TCP (SOCK_STREAM) connection is created with this host and the recorded payloads
* are replayed to it

*

*

*

Then, the socket of this connection is stored in the 'redirected_ connection' B-Tree
in order to reuse it to forward the next packets of the communication
*
\return 0 if the connection has been successfully replayed, anything else 1if not
*/
int replay_tcp()
{
if(0 != get_current_struct())
return -1;

/*! get the first packet recorded in an ip structure

*/
struct iphdr *first_ip = (struct iphdr *) g_slist_nth_data (current_connection_data->recordlist, 0);
struct tcphdr *first_tcp = (struct tcphdr *) (g_slist_nth_data(current_connection_data->recordlist, O0)

+ (first_ip->ihl << 2));

/*! we need to find which IP:PORT are the attacker's one, so we search

Julien Vehent - Attack redirection in Honeypots p. 65/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

* the local network value in the ip packet and store the result in the
* following variables
*/

gchar *attacker_ip;

int attacker_port, argusnet_port;

if (NULL != strstr(inet_ntoa(first_ip->saddr), (char *) g_hash_table_lookup(config, "net_prefix")))
{

/*! if the two saddr matches, saddr is the local addr
*

* so, we copy 1in source_ip the attacker address

*/
attacker_ip = g_strdup_printf ("%s", (char *) inet_ntoa(first_ip->daddr));
attacker_port = ntohs (first_tcp->dest);
argusnet_port = ntohs (first_tcp->source);
}
else {
/*! pattern was not found so the attacker IP is the source addr
*/
attacker_ip = g_strdup_printf ("%s", (char *) inet_ntoa(first_ip->saddr));
attacker_port = ntohs (first_tcp->source);
argusnet_port = ntohs (first_tcp->dest);

/*! We are ready to replay the connection !
*

* init the tcp socket
*/
current_connection_data->socket = socket (PF_INET, SOCK_STREAM, O0);

int on =1;
if (setsockopt (current_connection_data->socket, IPPROTO_IP, IP_HDRINCL, (char *)&on,sizeof(on)) < 0)
g_print ("NETCODE : Unable to free the tcp socket (setsockopt error)\n");

/*! the sockaddr_in that contains the dest. address is used
* with send() function

*/
current_connection_data->connsin.sin_family = AF_INET;
current_connection_data->connsin.sin_port = htons (argusnet_port);

///this value is for test purpose, should replace it with a research in a correspondance table
current_connection_data->connsin.sin_addr.s_addr = inet_addr ("1.1.1.3");

/*! connect (), create a tcp session
\param[in] s, a socket file descriptor, define the 14 protocol
\param[in] sin, sockaddr structure, contain the dest port and dest ip addr
\param[in] size of the sockaddr structure
*

\return -1 on error
*/
if(-1 == (connect (current_connection_data->socket,
(struct sockaddr *) ¤t_connection_data->connsin,
sizeof (struct sockaddr))))

syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Unable to connect to target host");
g_print ("error while connecting to host\n");
return -1;

}

/*! For each packet received from the attacker, get the payload and replay it to
* the high-interaction honeypot
*

* skip packets from the low—interaction honeypot to the attacker
*

int i = 0;
while(g_slist_nth_data(current_connection_data->recordlist, i) != NULL)
{
/*! get the packet back
*/
struct iphdr *ip =
(struct iphdr *) g_slist_nth_data(current_connection_data->recordlist, 1i);

/*! if packet source addr does not match the low-inter honeypot addr, replay it

*/
if (NULL == strstr(inet_ntoa(ip->saddr), (char *) g_hash_table_lookup (config, "net_prefix")))
{

Julien Vehent - Attack redirection in Honeypots p. 66 /68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

struct tcphdr *tcp = (struct tcphdr *) (g_slist_nth data(current_connection_data->recordlist, 1)
+ (ip—->ihl << 2));

/*! get payload if tcp push flag is set to 1

*/

if (tcp->psh == 1)
{

char *payload;
int PAYLOAD_SIZE = ntohs (ip->tot_len) - ((ip->ihl << 2) + (tcp->doff << 2));

payload = calloc((size_t)1, (size_t) (PAYLOAD_SIZE));

/*! set the related memory to 0
*

/
memset (payload, 0x0, PAYLOAD_SIZE);

/*! get the payload from the list
*/
memcpy (payload,
g_slist_nth_data (current_connection_data->recordlist, i) + (ip->ihl << 2) + (tcp->doff <<
2)/
PAYLOAD_SIZE
)i

int bytes_sent = -1;

/*! send(), send a message on a socket
\param[in] s, a socket file descriptor
\param[in] payload, buffer that contain the packet
\param[in] PAYLOAD SIZE, size of the packet
\param[in] flags, set to 0
*
\return the number of bytes sent on succes, a negative value on error
*/
bytes_sent = send(current_connection_data->socket,
payload,
PAYLOAD_SIZE,
0
)i

if (bytes_sent < 0)

syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Packet has not been send... an error has
occured") ;
g_print ("error while sending packet #%d\n",1);
return -1;
}
else
g_print ("replaying : pkt # %d sent, size = %d bytes\n",i,bytes_sent);

}
else {
/*! if a close request is reached, close the connection
*

* that should not happend because the connection is supposed
* to be alive, otherwise there's no point to redirect it
*/
if (tcp->fin == 1)
close (current_connection_data->socket) ;

}

/*! store the ack packet in memory
*/

char pkt[ntohs (ip->tot_len)];

memcpy (pkt, (char *) g_slist_nth_data(current_connection_data->recordlist, i), ntohs(ip->tot_len));

/*! record packet in pcap format in mode 'redirected w/o nfqueue' */

if (0 != record_pkt (NULL, pkt, 2))

{
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Pcap recording failed !!!");
g_print ("Unable to record the packet in PCAP format\n");

}

/*! increment to process next packet

*/
i++;

Julien Vehent - Attack redirection in Honeypots p. 67/68

Master Management de la Sécurité des Systémes Industriels et des Systémes d'Information - Avril/Septembre 2007

}

/*! job's done, don't redo it later
*

/
current_connection_data->hasbeenreplayed = 1;

/*! create a thread that will listen to packets from this connection and forward them to
* the attacker
*/
if(0!= pthread_create (¤t_connection_data->thread_listen, NULL, (void *)listen_tcp, key->str))
{
g_print ("Error while creating the listening thread\n");
return -1;
}

else
g_print ("NETCODE : Listen_TCP Thread created for this connection\n");

pthread_detach (current_connection_data->thread_listen);

/*! return a success value
*/

return 0;

int replay_udp ()

{
g_print ("UDP replaying is not available yet...\n");

return 0;

}

int forward(unsigned short proto, char *nf_packet)
{
/*! select TCP or UDP replay mode
*/
switch (proto)
{
case 6
forward_tcp (nf_packet);
break;

case 17
forward_udp (nf_packet) ;
break;

default :
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Cannot forward unsupported protocol");

g_print ("You're asking me to forward a packet which's not tcp nor udp... that won't work !\n");
return -1;

}

return 0;

}

int replay (unsigned short proto)
{
/*! select TCP or UDP replay mode
*/
switch (proto)
{
case 6
replay_tcp();
break;

case 17 :
replay_udp () ;
break;

default
syslog (LOG_ERR | LOG_USER, "%s","NETCODE : Cannot replay unsupported protocol");
g_print ("You're asking me to replay a packet which's not tcp nor udp... that won't work !\n");

return -1;

}

return 0;

Julien Vehent - Attack redirection in Honeypots p. 68/68

	Introduction		
	The University of Maryland
	Honeypot theory
	1.1	Why Honeypots ?
	1.1.1		The Honeynet Project

	1.2	Honeypot Types
	1.2.1	Low-Interaction Honeypots
	1.2.2		High-Interaction Honeypots
	1.2.3		Hybrid Honeypots

	1.3	A New Hybrid Honeypot
	1.3.1		Attack selection
	1.3.2		What is an interesting attack ?
	1.3.3		Unknown attacks selection techniques
	1.3.4		Connection sequences strings analysis
	1.3.5		The interaction limit problem
	1.3.6		Conclusion

	The Argusproxy project
	2.1	The Argusnet Network
	2.1.1		Argusnet experiments

	2.2	ArgusProxy : software engineering
	2.2.1		Requirements
	2.2.2	Activity Diagram
	2.2.3	Deployment Diagram
	2.2.4	Modules interactions
	2.2.4.1	Redirector
	2.2.4.2	Decision Engine
	2.2.4.3 	Shared memory

	2.2.5		Documentation

	2.3	Timetable
	2.3.1		Gantt diagram

	2.4	Technical issues

	Tests & future work
	Conclusion
	References
	Figures
	Glossary
	Appendix
	A ⇒ Gantt
	B ⇒ Connections sequences analysis
	C ⇒ ArgusProxy Network Engine
	D ⇒ ArgusProxy source code

