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Problem
Monolithic/border firewalls will either fail 
under load, or contain too many rules to 

secure anything.
 

Solution
Host-based firewalls

and automated rule management.
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● Systems & Security 
Engineer at 

● I built and secure web 
infrastructures on Linux

● http://www.github.com/jvehent/

● http://jve.linuxwall.info

http://www.github.com/jvehent/
http://jve.linuxwall.info/
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The 70's Firewall design
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The 90's Firewall design
● Few powerful & 

expensive firewalls 
filter the entire traffic

● DMZ design: works 
with small DMZs

● Rules maintained 
manually: need a 
route opening/closing 
workflow
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2000 Firewall design failure 
● “Let's keep pilling stuff in 

the DMZ, it needs to be 
accessed from the Internet 
anyway.”

● Really complex rule 
opening workflow

● Rules are closed when 
someone happens to look 
at the firewall at 4am on a 
sunday morning.
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2005: We Need More !
● Bigger firewalls

● NIDS, NIPS, HIDS

● Web App Firewall, 
Database firewalls

● Logs centralizers, Logs 
analyzers, Logs readers 

● Developers stopped 
trying to connect 
application A to server B 
somewhere around 2008
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2010: Congratulations !

You are now routing your 
entire datacenter traffic 
through a handful of 
appliances from very happy 
vendors.

25,000 IDS alerts per day, 6GB of 
firewall logs, added 300ms of latency 
everywhere... sounds familiar ?
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Service Oriented Architecture

● Services are autonomous

● Services call each other 
using a standard protocol 
(REST: JSON over HTTP)

● The architecture is 
described by a list of 
dependencies between 
services

“Cloud” type requirements:
• No single point of failure
• Optimize resources utilization
• Augment & reduce capacity rapidly
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Service Oriented Security

AWS security groups (SG)

• Create SG-X for service X

• Create SG-Y for service Y

• Allow SG-X to connect to SG-Y

• All instances (servers) in SG-X 
will be allowed to connect to 
SG-Y

=> Dynamic security: No need to 
update the firewall for each new 
server
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Service Oriented Security
Inter-services policy

ACCEPT 0.0.0.0/0 to CACHING on TCP/80

ACCEPT CACHING to FRONTEND on TCP/80

ACCEPT FRONTEND to ServiceX on TCP/80

ACCEPT FRONTEND to ServiceZ on TCP/80

ACCEPT ServiceX to ServiceY on TCP/80

Intra-service policy

ACCEPT API to DB on TCP/5432

ACCEPT Workers to DB on TCP/5432
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Scalability (you know, the cloud)
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Scalability (you know, the cloud)

Add 2 new API nodes
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Scalability (you know, the cloud)

Allow the 2 API nodes
in the DB firewall
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Scalability (you know, the cloud)

Allow all the Frontend nodes
to connect to the new API nodes
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The Tool: Chef
● Chef is a provisioning tool (puppet, cfengine, ol'-school-bash-script)

● Cookbook: ruby/chef scripts that installs and configure something.

● Role: a set of configuration value and a list of cookbooks to run.

● Administrator assigns a role to a node (server). Chef will run on the node, 
pull the list of cookbook and configuration variables, and install stuff on the 
node... and repeat again every X minutes. 

● Files managed by Chef can't be edited manually.

● Each node indexes tons of metrics from running systems and store them in 
a central database (couchdb in Chef10, postgres in Chef11). It contains 
everything that you've ever dreamed of, and more !
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Chef Searches

$ knife search node "roles:web-frontend AND chef_environment:staging"

3 items found
  Node Name:   frontend1.staging.domain
  Environment: staging
  FQDN:        frontend1.staging.domain
  IP:          172.21.1.2
  Run List:    role[base], role[web-frontend]
  Roles:       rsyslog-client, snmp-base, nagios-client, ntp-client, 
  chef-client, ossec-agent, openldap-client,   web-frontend
  Recipes:     ohai, timezone, ntp, afw, apt,  system-tools, sysctl, 
  nagios::client, snmp, diamond,   openldap::client, sudo, rsyslog, 
  ossec::agent, nginx, varnish
  Platform:    centos 6

  Node Name:   frontend2.staging.domain
  Environment: staging
  FQDN:        frontend1.staging.domain
  IP:          172.21.1.3
  Run List:    role[base], role[web-frontend]
...
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Chef Searches

# Get all the agents at once, more efficient
ossec_agents = search(:node,
                      "roles:ossec-agent AND chef_environment:prod")

ossec_agents.each do |agent|
  # this agent is running fine, go to the next one
  if ossec_agent_is_active?(agent_hash[:id])
    node.set[:ossec][:agents][agent_hash[:id]][:status] = "active"
    next
  else
    create_ossec_agent(agent_hash[:id])

 # Etc...
  end
end
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Because Chef can search the entire 
infrastructure, it can be used to 

generate a firewall policy dynamically.

All we need is a syntax to declare the 
policy, and a cookbook to apply it.

Meet AFW
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A{daptative,utomated,Weber,...} FireWall
● Concepts

• Automated ruleset generation

• 1 to 1 rules only: connection from 
one node to another is 
represented by one rule (no range 
opening)

• User-specific outbound firewall: 
one user, identified by UID, can 
connect to one ip:port destination

• Generic rules: avoid writing 
custom rules for each node, write 
rules for type of service instead

● Technology

• Stock iptables-save format

• Reload the ruleset every time 
chef runs, flushes unwanted rules

• Netfilter features:

• Fast reload: iptables-restore

• Owner match (xt_owner)

• Conntrack (xt_conntrack)
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AFW: the syntax
● Rules are attributes of the AFW cookbook, and can be defined in roles, 

or other cookbooks

● Open INPUT access to rabbitmq

port to a small list of servers

● Same, but in the staging

environment only

      'RabbitMQ AMQP Producers' => {
        :direction => 'in',
        :user => 'rabbitmq',
        :protocol => 'tcp',
        :interface => 'default',
        :source => ['producer1.production.domain',
                    'producer2.production.domain',
                    'producer1.staging.domain'],
        :dport => '5672'
      },

      'MongoDB Staging access from Jenkins' => {
        :direction => 'in',
        :protocol => 'tcp',
        :user => 'mongodb',
        :dport => '27017',
        :source => ['jenkins1.production.domain',
                    'jenkins2.production.domain'],
        :interface => 'all',
        :env => 'staging'
      }
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AFW: Searches
● Uses Chef's search capabilities to list the nodes allowed to connect.

● Open the firewall between a server

and its clients. On the right, for Ossec.

● Open a backend database to

application servers, below for mongodb.

default_attributes(
  :afw => {
    :rules => {
      'ossec_agent_to_server' => {
        :direction => 'in',
        :protocol => 'udp',
        :user => 'ossec',
        :dport => '1514',
        :source => 'roles:ossec-agent'
      },
      'ossec_server_to_agent' => {
        :direction => 'out',
        :protocol => 'udp',
        :user => 'ossec',
        :dport => '1514',
        :destination => 'roles:ossec-agent'
      }
    }
  },

      'MongoDB App Entry Point' => {
        :protocol => 'tcp',
        :direction => 'in',
        :user => 'mongodb',
        :source => '(roles:nodejs
                     OR roles:python-worker
                     OR roles:api-server)'
        :dport => '27017'
      },
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AFW: The notion of service
● AFW rules are generic 

across all services

● tag identifies the 
members of a service

● Ex: database accepts 
connections from the app 
servers in its service All nodes in Service X are tagged `X`.

All nodes in Service Y are tagged `Y`.
The message broker has both `X` and `Y` tags

      'Accept connections from app servers' => {
        :protocol => 'tcp',
        :direction => 'in',
        :user => 'postgres',
        :destination => 'roles:app-server AND SAMETAG',
        :dport => '5432'
      },

roles:mongodb AND tags:X AND chef_environment:#{node.chef_environment}

→ returns: ['REST-API-X1','REST-API-X2','REST-API-X3',
 'Worker-X1', 'Worker-X2']
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AFW: firewall a mongodb cluster
● When building a MongoDB cluster, all members share the same “shard”.

● Chef knows the name of the shard, in the shard_name attribute.

● shard_name is used in a source/destination search to find the members 
of a cluster, and open the firewall to them
      'MongoDB Cluster Inbound Replication' => {
        :protocol => 'tcp',
        :direction => 'in',
        :user => 'mongodb',
        :source => 'shard_name:#{node[:mongodb][:shard_name]}',
        :dport => '27017'
      },
      'MongoDB Cluster Outbound Replication' => {
        :protocol => 'tcp',
        :direction => 'out',
        :user => 'mongodb',
        :destination => 'shard_name:#{node[:mongodb][:shard_name]}',
        :dport => '27017'
      },
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AFW: Unusual rules ? Predefine them.
● Predefined rules are copied verbatim into the iptables ruleset. No 

interpretation.
:afw => {
  :rules => {
    'Accept all packets router through the bridge' => {
      :table => 'filter',
      :rule => '-I FORWARD -o br0 -m physdev --physdev-is-bridged -j ACCEPT'
    },
    'Drop connection to the admin panel on the eth0 interface' => {
      :table => 'mangle',
      :rule => '-A INPUT -i eth0 -p tcp --dport 80 -m string --string "get /admin 
http/1.1" --icase --algo bm -m conntrack --ctstate ESTABLISHED -j DROP
    },
    'DNAT a source IP to change the destination port' => {
      :table => 'nat',
      :rule => '-A PREROUTING -i eth3 -s 201.23.72.3 -p tcp --dport 8008 -j DNAT 
--to-destination 127.0.0.1:1234'
    },
    'Dont do conntrack on this specific user's UDP packets' => {
      :table => 'raw',
      :rule => '-A OUTPUT -o eth0 -p udp -m owner --uid-owner 105 -j NOTRACK'
    }
  }
}
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AFW: Limitations
● The entire security relies on the security of the Chef server (true for 

all provisioning systems)

● Nodes can modify their own Chef attributes. If one node gets 
hacked, it can modify its run_list, environment and tags to 
impersonate another node !

root@hackedserver# shef -z
  chef > node.tags
   => ["foo"]
  chef > node.tags.push("bar")
   => ["foo", "bar"]
  chef > node.save
   => <Chef::Node:0x3fc6a2c3b830 @name="hackedserver.domain.net">
  chef > node.tags
   => ["foo", “bar”]

mailto:root@hackedserver
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Future Work
●Ipset

–If a search returns more than {10? 20 ? 100?} IPs, 
automatically create an Ipset.

●Forward rules
–Use AFW to manage the FORWARD rules of a 
border firewall

●IPv6
●Ebtables
●Support for more modules (time, string, …)
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Future Work: Service Oriented Security 
●Instead of managing the firewall as a network policy, 
manage it as an Access Control List
“application”: {

“accounting”: {

“dependencies”: {
“applications”: [ “printing“, “human-ressources” ],
“infrastructure”: [ “graphite“, “internal-smtp“ ]
“external”: [ “https://api.salesforce.com“,
              “https://api.paypal.com“ ]

}
},

“human-ressources”: {

“dependencies”: {
…

}

https://api.salesforce.com/


Questions ?

● https://github.com/jvehent/AFW/
● http://community.opscode.com/cookbooks/afw

https://github.com/jvehent/AFW/
http://community.opscode.com/cookbooks/afw
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AFW: Open rules “on-the-fly”
● When we can't create generic rules ahead of time, we can let a cookbook 

create its own rules.

● AFW's core functions can be called from another cookbook. It's all Ruby.

● Useful, but harder to diagnose. Use with caution.

      # Call the AFW module to create the rule
      AFW.create_rule(node,
                      "Haproxy local LB to #{server['hostname']}:#{port}",
                      {'protocol' => 'tcp',
                       'direction' => 'out',
                       'user' => 'haproxy',
                       'destination' => "#{server['ipaddress']}",
                       'dport' => "#{port}"
                      })  



AFW Firewalling dynamic infrastructures 
(the cloud) with Chef and Netfilter

AFW: User specific Outbound rules
● Netfilter's INPUT chain cannot check the owner of the socket 

● But the OUTPUT chain can:

– Example with the `root` user

– The `nagios` user has much less permissions

-A OUTPUT -m owner --uid-owner 0 -m state --state NEW -j root
:root – [0:0]
# Root user is allowed to connect to the RSYSLOG server
-A root -o eth1 -p tcp --dport 514 -d 172.31.15.13 -m conntrack --ctstate NEW -j ACCEPT
# Root is also allowed to connect anywhere in TCP
-A root -p tcp --dport 1:65535 -d 0.0.0.0/0 -m conntrack --ctstate NEW -j ACCEPT
# Everything else is logged
-A root -j LOG --log-prefix "DROP_AFW_OUTPUT_root " --log-uid --log-tcp-sequence

-A OUTPUT -m owner --uid-owner 107 -m state --state NEW -j nagios
:nagios – [0:0]
# Nagios local user is allowed to connect to the Nagios server
-A INPUT -i eth1 -p tcp --dport 5666 -s 172.31.12.42 -m conntrack --ctstate NEW -j ACCEPT
-A nagios -j LOG --log-prefix "DROP_AFW_OUTPUT_nagios " --log-uid --log-tcp-sequence
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