
AFW: Automating host-based
firewalls with Chef

Julien Vehent
Aweber Communications

9th Netfilter Workshop
Open Source Days 2013

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Problem
Monolithic/border firewalls will either fail
under load, or contain too many rules to

secure anything.

Solution
Host-based firewalls

and automated rule management.

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Julien Vehent - @jvehent

● Systems & Security
Engineer at

● I built and secure web
infrastructures on Linux

● http://www.github.com/jvehent/

● http://jve.linuxwall.info

http://www.github.com/jvehent/
http://jve.linuxwall.info/

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

The 70's Firewall design

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

The 90's Firewall design
● Few powerful &

expensive firewalls
filter the entire traffic

● DMZ design: works
with small DMZs

● Rules maintained
manually: need a
route opening/closing
workflow

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

2000 Firewall design failure
● “Let's keep pilling stuff in

the DMZ, it needs to be
accessed from the Internet
anyway.”

● Really complex rule
opening workflow

● Rules are closed when
someone happens to look
at the firewall at 4am on a
sunday morning.

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

2005: We Need More !
● Bigger firewalls

● NIDS, NIPS, HIDS

● Web App Firewall,
Database firewalls

● Logs centralizers, Logs
analyzers, Logs readers

● Developers stopped
trying to connect
application A to server B
somewhere around 2008

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

2010: Congratulations !

You are now routing your
entire datacenter traffic
through a handful of
appliances from very happy
vendors.

25,000 IDS alerts per day, 6GB of
firewall logs, added 300ms of latency
everywhere... sounds familiar ?

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Service Oriented Architecture

● Services are autonomous

● Services call each other
using a standard protocol
(REST: JSON over HTTP)

● The architecture is
described by a list of
dependencies between
services

“Cloud” type requirements:
• No single point of failure
• Optimize resources utilization
• Augment & reduce capacity rapidly

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Service Oriented Security

AWS security groups (SG)

• Create SG-X for service X

• Create SG-Y for service Y

• Allow SG-X to connect to SG-Y

• All instances (servers) in SG-X
will be allowed to connect to
SG-Y

=> Dynamic security: No need to
update the firewall for each new
server

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Service Oriented Security
Inter-services policy

ACCEPT 0.0.0.0/0 to CACHING on TCP/80

ACCEPT CACHING to FRONTEND on TCP/80

ACCEPT FRONTEND to ServiceX on TCP/80

ACCEPT FRONTEND to ServiceZ on TCP/80

ACCEPT ServiceX to ServiceY on TCP/80

Intra-service policy

ACCEPT API to DB on TCP/5432

ACCEPT Workers to DB on TCP/5432

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Scalability (you know, the cloud)

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Scalability (you know, the cloud)

Add 2 new API nodes

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Scalability (you know, the cloud)

Allow the 2 API nodes
in the DB firewall

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Scalability (you know, the cloud)

Allow all the Frontend nodes
to connect to the new API nodes

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

The Tool: Chef
● Chef is a provisioning tool (puppet, cfengine, ol'-school-bash-script)

● Cookbook: ruby/chef scripts that installs and configure something.

● Role: a set of configuration value and a list of cookbooks to run.

● Administrator assigns a role to a node (server). Chef will run on the node,
pull the list of cookbook and configuration variables, and install stuff on the
node... and repeat again every X minutes.

● Files managed by Chef can't be edited manually.

● Each node indexes tons of metrics from running systems and store them in
a central database (couchdb in Chef10, postgres in Chef11). It contains
everything that you've ever dreamed of, and more !

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Chef Searches

$ knife search node "roles:web-frontend AND chef_environment:staging"

3 items found
 Node Name: frontend1.staging.domain
 Environment: staging
 FQDN: frontend1.staging.domain
 IP: 172.21.1.2
 Run List: role[base], role[web-frontend]
 Roles: rsyslog-client, snmp-base, nagios-client, ntp-client,
 chef-client, ossec-agent, openldap-client, web-frontend
 Recipes: ohai, timezone, ntp, afw, apt, system-tools, sysctl,
 nagios::client, snmp, diamond, openldap::client, sudo, rsyslog,
 ossec::agent, nginx, varnish
 Platform: centos 6

 Node Name: frontend2.staging.domain
 Environment: staging
 FQDN: frontend1.staging.domain
 IP: 172.21.1.3
 Run List: role[base], role[web-frontend]
...

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Chef Searches

Get all the agents at once, more efficient
ossec_agents = search(:node,
 "roles:ossec-agent AND chef_environment:prod")

ossec_agents.each do |agent|
 # this agent is running fine, go to the next one
 if ossec_agent_is_active?(agent_hash[:id])
 node.set[:ossec][:agents][agent_hash[:id]][:status] = "active"
 next
 else
 create_ossec_agent(agent_hash[:id])

 # Etc...
 end
end

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Because Chef can search the entire
infrastructure, it can be used to

generate a firewall policy dynamically.

All we need is a syntax to declare the
policy, and a cookbook to apply it.

Meet AFW

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

A{daptative,utomated,Weber,...} FireWall
● Concepts

• Automated ruleset generation

• 1 to 1 rules only: connection from
one node to another is
represented by one rule (no range
opening)

• User-specific outbound firewall:
one user, identified by UID, can
connect to one ip:port destination

• Generic rules: avoid writing
custom rules for each node, write
rules for type of service instead

● Technology

• Stock iptables-save format

• Reload the ruleset every time
chef runs, flushes unwanted rules

• Netfilter features:

• Fast reload: iptables-restore

• Owner match (xt_owner)

• Conntrack (xt_conntrack)

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: the syntax
● Rules are attributes of the AFW cookbook, and can be defined in roles,

or other cookbooks

● Open INPUT access to rabbitmq

port to a small list of servers

● Same, but in the staging

environment only

 'RabbitMQ AMQP Producers' => {
 :direction => 'in',
 :user => 'rabbitmq',
 :protocol => 'tcp',
 :interface => 'default',
 :source => ['producer1.production.domain',
 'producer2.production.domain',
 'producer1.staging.domain'],
 :dport => '5672'
 },

 'MongoDB Staging access from Jenkins' => {
 :direction => 'in',
 :protocol => 'tcp',
 :user => 'mongodb',
 :dport => '27017',
 :source => ['jenkins1.production.domain',
 'jenkins2.production.domain'],
 :interface => 'all',
 :env => 'staging'
 }

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: Searches
● Uses Chef's search capabilities to list the nodes allowed to connect.

● Open the firewall between a server

and its clients. On the right, for Ossec.

● Open a backend database to

application servers, below for mongodb.

default_attributes(
 :afw => {
 :rules => {
 'ossec_agent_to_server' => {
 :direction => 'in',
 :protocol => 'udp',
 :user => 'ossec',
 :dport => '1514',
 :source => 'roles:ossec-agent'
 },
 'ossec_server_to_agent' => {
 :direction => 'out',
 :protocol => 'udp',
 :user => 'ossec',
 :dport => '1514',
 :destination => 'roles:ossec-agent'
 }
 }
 },

 'MongoDB App Entry Point' => {
 :protocol => 'tcp',
 :direction => 'in',
 :user => 'mongodb',
 :source => '(roles:nodejs
 OR roles:python-worker
 OR roles:api-server)'
 :dport => '27017'
 },

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: The notion of service
● AFW rules are generic

across all services

● tag identifies the
members of a service

● Ex: database accepts
connections from the app
servers in its service All nodes in Service X are tagged `X`.

All nodes in Service Y are tagged `Y`.
The message broker has both `X` and `Y` tags

 'Accept connections from app servers' => {
 :protocol => 'tcp',
 :direction => 'in',
 :user => 'postgres',
 :destination => 'roles:app-server AND SAMETAG',
 :dport => '5432'
 },

roles:mongodb AND tags:X AND chef_environment:#{node.chef_environment}

→ returns: ['REST-API-X1','REST-API-X2','REST-API-X3',
 'Worker-X1', 'Worker-X2']

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: firewall a mongodb cluster
● When building a MongoDB cluster, all members share the same “shard”.

● Chef knows the name of the shard, in the shard_name attribute.

● shard_name is used in a source/destination search to find the members
of a cluster, and open the firewall to them
 'MongoDB Cluster Inbound Replication' => {
 :protocol => 'tcp',
 :direction => 'in',
 :user => 'mongodb',
 :source => 'shard_name:#{node[:mongodb][:shard_name]}',
 :dport => '27017'
 },
 'MongoDB Cluster Outbound Replication' => {
 :protocol => 'tcp',
 :direction => 'out',
 :user => 'mongodb',
 :destination => 'shard_name:#{node[:mongodb][:shard_name]}',
 :dport => '27017'
 },

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: Unusual rules ? Predefine them.
● Predefined rules are copied verbatim into the iptables ruleset. No

interpretation.
:afw => {
 :rules => {
 'Accept all packets router through the bridge' => {
 :table => 'filter',
 :rule => '-I FORWARD -o br0 -m physdev --physdev-is-bridged -j ACCEPT'
 },
 'Drop connection to the admin panel on the eth0 interface' => {
 :table => 'mangle',
 :rule => '-A INPUT -i eth0 -p tcp --dport 80 -m string --string "get /admin
http/1.1" --icase --algo bm -m conntrack --ctstate ESTABLISHED -j DROP
 },
 'DNAT a source IP to change the destination port' => {
 :table => 'nat',
 :rule => '-A PREROUTING -i eth3 -s 201.23.72.3 -p tcp --dport 8008 -j DNAT
--to-destination 127.0.0.1:1234'
 },
 'Dont do conntrack on this specific user's UDP packets' => {
 :table => 'raw',
 :rule => '-A OUTPUT -o eth0 -p udp -m owner --uid-owner 105 -j NOTRACK'
 }
 }
}

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: Limitations
● The entire security relies on the security of the Chef server (true for

all provisioning systems)

● Nodes can modify their own Chef attributes. If one node gets
hacked, it can modify its run_list, environment and tags to
impersonate another node !

root@hackedserver# shef -z
 chef > node.tags
 => ["foo"]
 chef > node.tags.push("bar")
 => ["foo", "bar"]
 chef > node.save
 => <Chef::Node:0x3fc6a2c3b830 @name="hackedserver.domain.net">
 chef > node.tags
 => ["foo", “bar”]

mailto:root@hackedserver

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Future Work
●Ipset

–If a search returns more than {10? 20 ? 100?} IPs,
automatically create an Ipset.

●Forward rules
–Use AFW to manage the FORWARD rules of a
border firewall

●IPv6
●Ebtables
●Support for more modules (time, string, …)

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

Future Work: Service Oriented Security
●Instead of managing the firewall as a network policy,
manage it as an Access Control List
“application”: {

“accounting”: {

“dependencies”: {
“applications”: [“printing“, “human-ressources”],
“infrastructure”: [“graphite“, “internal-smtp“]
“external”: [“https://api.salesforce.com“,
 “https://api.paypal.com“]

}
},

“human-ressources”: {

“dependencies”: {
…

}

https://api.salesforce.com/

Questions ?

● https://github.com/jvehent/AFW/
● http://community.opscode.com/cookbooks/afw

https://github.com/jvehent/AFW/
http://community.opscode.com/cookbooks/afw

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: Open rules “on-the-fly”
● When we can't create generic rules ahead of time, we can let a cookbook

create its own rules.

● AFW's core functions can be called from another cookbook. It's all Ruby.

● Useful, but harder to diagnose. Use with caution.

 # Call the AFW module to create the rule
 AFW.create_rule(node,
 "Haproxy local LB to #{server['hostname']}:#{port}",
 {'protocol' => 'tcp',
 'direction' => 'out',
 'user' => 'haproxy',
 'destination' => "#{server['ipaddress']}",
 'dport' => "#{port}"
 })

AFW Firewalling dynamic infrastructures
(the cloud) with Chef and Netfilter

AFW: User specific Outbound rules
● Netfilter's INPUT chain cannot check the owner of the socket

● But the OUTPUT chain can:

– Example with the `root` user

– The `nagios` user has much less permissions

-A OUTPUT -m owner --uid-owner 0 -m state --state NEW -j root
:root – [0:0]
Root user is allowed to connect to the RSYSLOG server
-A root -o eth1 -p tcp --dport 514 -d 172.31.15.13 -m conntrack --ctstate NEW -j ACCEPT
Root is also allowed to connect anywhere in TCP
-A root -p tcp --dport 1:65535 -d 0.0.0.0/0 -m conntrack --ctstate NEW -j ACCEPT
Everything else is logged
-A root -j LOG --log-prefix "DROP_AFW_OUTPUT_root " --log-uid --log-tcp-sequence

-A OUTPUT -m owner --uid-owner 107 -m state --state NEW -j nagios
:nagios – [0:0]
Nagios local user is allowed to connect to the Nagios server
-A INPUT -i eth1 -p tcp --dport 5666 -s 172.31.12.42 -m conntrack --ctstate NEW -j ACCEPT
-A nagios -j LOG --log-prefix "DROP_AFW_OUTPUT_nagios " --log-uid --log-tcp-sequence

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

